关灯
护眼
字体:

第四章 四维世界

首页书架加入书签返回目录

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

灯————我们今天称之为反应延迟。

    图31

    虽然伽利略的实验没有导出任何正面结果,但他的另一项发现,即发现了木星的卫星,却为第一次实际测量光速提供了基础。1675年,丹麦天文学家罗默(Roemer)在观测木星卫星的食时,注意到这些卫星消失在木星阴影中的时间间隔并不总是相同,而是随着那一特殊时刻木星与地球之间的距离而变长或变短。罗默立刻意识到(你在考察图31b之后也会意识到),这种效应并非缘于木星的卫星运动不规则,而仅仅是由于木星与地球的距离变动导致我们看到这些食有不同的延迟。由他的观测结果可以得出,光速约为每秒185 000英里。难怪伽利略用他的设备测不出光速,因为光从他的灯传到助手再传回来只需十万分之几秒!

    不过,伽利略用其粗糙的遮光灯做不到的事情,后来用更精密的物理仪器做到了。图31c是法国物理学家斐索(Fizeau)最先使用的以较短距离测量光速的设备,其主要部件是安在同一根轴上的两个齿轮。如果我们沿着与轴平行的方向看这两个齿轮,那么第一个齿轮的齿对着第二个齿轮的齿缝。于是,无论轴如何转动,沿着与轴平行的方向射出的细光束都无法穿过这套齿轮。现在假定这套齿轮系统高速旋转。由于透过第一个齿轮齿缝的光线需要一些时间才能到达第二个齿轮,所以如果在此期间这套齿轮系统恰好转过半个齿缝,那么这束光就能穿过第二个齿轮了。这里的情况非常类似于汽车以恰当的速度沿一条装有红绿灯同步系统的街道行驶。如果这套齿轮的转速提高一倍,那么光到达第二个齿轮时正好会射到转来的下一个齿上,光的行进将再次受阻。但如转速继续提高,光将再次能够穿过,因为光束到达之前这个齿已经转了过去,而下一个齿缝恰好会在这个时刻转来让光穿过去。因此,只要注意光的相继出现和消失所对应的转速,就能估算出光在两齿轮之间穿行的速度。为了方便实验并且减小所需的转速,我们可以让光在两齿轮之间多走些距离,这可以借助于图31c中所示的几面镜子来实现。在这个实验中,当齿轮以1 000转每秒的速度旋转时,斐索第一次看到光穿过了距离自己最近那个齿轮的齿缝。这说明在此转速下,光从一个齿轮到达另一个齿轮时,齿轮的齿已经转过了半个齿距。由于每一个齿轮都有50个相同尺寸的齿,所以齿距为齿轮周长的1/100,光穿过这段距离的时间也就是齿轮转动一整圈所需时间的1/100。斐索将这些计算结果与光从一个齿轮传到另一个齿轮的距离联系起来,得到光速为300 000公里每秒或186 000英里每秒,它与罗默观测木星卫星所得到的结果几乎相同。

    继这些先驱者的工作之后,人们又用天文学和物理学的方法做了大量独立测量。目前,光在真空中的速度(通常用字母c来表示)的最佳估计值是

    c = 299 776公里/秒或186 300英里/秒。

    天文学距离非常巨大,如果用英里或公里来度量它们,可能要写满好几张纸,此时极高的光速就成了一个方便的度量标准。于是,天文学家会说某颗星星距离我们5“光年”远,就像我们说乘火车去某个地方需要5小时一样。由于1年有31 558 000秒,1光年就对应于31 558 000×299 776 = 9 460 000 000 000公里或5 879 000 000 000英里。用“光年”来度量距离,实际上已经把时间看成一个维度,把时间单位看成一种空间量度了。我们也可以把程序反过来,说“光英里”,意指光走1英里的距离所需的时间。使用上述光速值,我们得到1光英里等于0.000 005 4秒。同样,“1光英尺”是0.000 000 001 1秒。这便回答了我们在上一节所讨论的那个四维正方体的问题。如果该正方体的空间尺寸(space-dimensions)为1英尺×1英尺×1英尺,那么其空间持续(space-duration)仅为0.000 000 001 1秒。如果这个边长1英尺的正方体存在了一整月的时间,就应把它看成一根沿着时间轴的方向被拉得极长的四维棒。

    三、四维距离

    既已解决沿着空间轴和时间轴使用什么可比较的单位这个问题,我们现在可以问,应当如何理解四维时空世界中两点之间的距离?务必记住,现在每一个点都对应于通常所说的“一个事件”,即位置与时间的结合。为了讲清楚这一点,我们不妨看看以下两个事件:

    事件1:1945年7月28日上午9点21分,位于纽约第五大道和五十街交叉口1楼的一家银行被劫。27

    事件2:同一天上午9点36分,一架军用飞机在雾中撞在纽约三十四街在第五、六大道之间帝国大厦79楼的墙上(图32)。

    图32

    这两个事件在空间上南北相隔16个街区,东西相隔1/2个街区,上下相隔78层楼;在时间上相隔15分钟。显然,要想描述这两个事件的空间间隔,并不一定要记录下街道的数字和楼层数,因为借助于著名的毕达哥拉斯定理,即空间中两点之间的距离等于单个坐标距离的平方和的平方根,可以将它们结合成一个直接的距离(图32右下角)。而为了运用毕达哥拉斯定理,当然必须先用可比较的单位(例如英尺)将所有所涉距离表达出来。如果一个南北街区长200英尺,一个东西街区长800英尺,帝国大厦每个楼层的平均高度为12英尺,那么三个坐标距离就是南北方向3 200英尺,东西方向400英尺,竖直方向936英尺。现在,运用毕达哥拉斯定理可以得出,两个地点之间的直接距离为

    英尺

    如果时间作为第四个坐标的概念有任何实际的有效性,我们现在应当能把两个事件的空间距离3360英尺与时间距离15分钟结合起来,用一个数来刻画这两个事件之间的四维距离。

    按照爱因斯坦原来的想法,只需把毕达哥拉斯定理作简单的推广,便可实际确定这样一个四维距离。在确定各个事件之间的物理关系方面,此距离要比单个的空间时间间隔更为基本。

    当然,要把空间和时间的数据结合起来,我们必须用可比较的单位将其表示出来,就像用英尺来表示街区长度和楼层高度一样。前已看到,用光速作为变换因子,便很容易做到这一点。于是,15分钟的时间间隔就成了800 000 000 000“光英尺”。现在,对毕达哥拉斯定理作简单的推广,我们便可把四维距离定义为所有四个坐标距离(即三个空间间隔和一个时间间隔)的平方和的平方根。然而在此过程中,我们完全取消了空间与时间的任何差别,这等于实际承认空间度量和时间度量可以相互转换。

    然而,任何人都无法用布遮住一根尺子,挥动一下魔杖,念念“空间去,时间来,变”这样的咒语,就能把它变成一个闪闪发光的全新闹钟!甚至连伟大的爱因斯坦也不例外。(图33)

    图33 爱因斯坦教授从来就做不到这个,但他做的比这强得多

    于是,若要在毕达哥拉斯公式中将时间与空间结合成一体,就必须采用某种不寻常的方法,以保留它们的一些自然差别。

    根据爱因斯坦的看法,在推广的毕达哥拉斯定理的数学表达式中,可以通过在时间坐标的平方前使用负号来强调空间距离与时间延续之间的物理差别。这样一来,两个事件之间的四维距离就可以表示成三个空间坐标的平方和减去时间坐标的平方,然后开平方。当然,首先要用空间单位来表示时间坐标。

    于是,银行遭劫与飞机撞击帝国大厦之间的四维距离应当这样来计算:

    。

    第四项之所以比前三项大得多,是因为这个例子来自“日常生活”,而以日常生活的标准来看,合理的时间单位的确太小了。如果不是以纽约市发生的两个事件,而是以宇宙中发生的一个事件作为例子,我们就能得到大小更为相当的数值了。例如,第一个事件是1946年7月1日上午9点整一颗原子弹在比基尼环礁爆炸,第二个事件是同一天上午9点10分一颗陨石落在火星表面,其时间间隔即为540 000 000 000光英尺,空间距离则约为650 000 000 000 英尺,两者大小相当。

    在这个例子中,两个事件之间的四维距离是:

    英尺=36×1010英尺,

    在数值上与纯空间距离和纯时间间隔都非常不同。

    当然,有人也许会反对这样一种看似不合理的几何学,因为它对其中一个坐标的处理不同于其他三个坐标。但不要忘了,任何旨在描述物理世界的数学系统都必须符合事物;如果空间和时间在其四维结合中的表现的确有所不同,那么四维几何学的定律也必须有对应的样式。而且还有一种简单的数学补救办法,可以使爱因斯坦的时空几何学看起来与我们在学校里学习的古老而美好的欧几里得几何学完全一样。这种补救办法就是把第四个坐标看成纯虚数,它是德国数学家闵可夫斯基(Hermann Minkovskij)提出的。大家也许还记得,本书第二章讲过,一个普通的数乘以就成了一个虚数,用这种虚数来解各种几何学问题是非常方便的。于是,根据闵可夫斯基的说法,要把时间看成第四个坐标,不仅要用空间单位来表示它,还要乘以。这样一来,那个例子中的四个坐标距离就成了:

    第一坐标:3 200英尺

    第二坐标:400英尺

    第三坐标:936英尺

    第四坐标:8×1011i光英尺。

    现在,我们也许可以把四维距离定义为所有四个坐标距离的平方和的平方根了。事实上,由于虚数的平方总是负的,所以用闵可夫斯基坐标写出的普通毕达哥拉斯公式将与用爱因斯坦坐标写出的似乎不太合理的公式在数学上等价。

    有一个故事,说的是一位患风湿病的老人问自己的健康朋友是如何避免这种病的。

    回答是:“我这辈子每天早上都会洗个冷水澡。”

    “噢,”前者喊道,“那你是患了冷水澡病!”

    于是,如果你不喜欢那个似乎会引起风湿病的毕达哥拉斯定理,你可以把它改成虚时间坐标这种冷水澡病。

    由于时空世界里的第四个坐标是虚的,所以必须考虑两种在物理上不同的四维距离。

    事实上,在前面讨论的纽约事件那样的情况下,两个事件之间的三维距离在数值上要小于时间间隔(用恰当的单位),毕达哥拉斯定理中根号下的数是负的,所以我们得到的推广的四维距离是虚的。而在其他一些情况下,时间延续要小于空间距离,因此根号下得到的是正数,这当然意味着在这些情况下,两个事件之间的四维距离是实的。

    如上所述,既然空间距离被看成实的,而时间延续被看成纯虚的,我们也许可以说,实的四维距离与普通的空间距离关系更近,而虚的四维距离与时间间隔关系更近。根据闵可夫斯基使用的术语,前一种四维距离被称为类空(raumartig)间隔,后一种被称为类时(zeitartig)间隔。

    我们将在下一章看到,类空间隔可以转变为正规的空间距离,类时间隔也可以转变为正规的时间间隔。然而,这两者一个为实数,一个为虚数,这给时空的相互转变造成了不可逾越的障碍,因此我们不可能把尺子变成时钟,也不可能把时钟变成尺子。
上一页目录下一章

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”