关灯
护眼
字体:

第五章 身体活动的测量:动能

首页书架加入书签返回目录

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

    刺激的功能不是被动产生的。一些刺激,比如光和声音,可以被直接概念化为运动,虽然另外的一些刺激,如重量、气味、味道不能被概念化,但是我们可以假设这些刺激仅仅通过引发或者改变我们身体内部的某种活动,就可以唤起或者改变我们的感受。因此它们的大小可用来表征身体活动的程度,从一定程度上而言,这种身体活动是与依赖于它们的感受相关的。

    关于身体活动的一般性测量,现在我们来讨论其中一些适当的话题,但暂时在这里先不对各种刺激及其引起的身体活动的具体测量方式进行探讨,因为我们认为在某种程度上来说,像这样的测量是现成的,可以借鉴物理学和化学中的某些方法。

    在日常生活中,人都经常会使用特定的尺度来衡量物理活动的大小或者强度。人们尝试寻找诸如运动的速度,或是运动质量的大小等信息,但是却没有对它们形成清晰的概念。首先人们很自然地相信:运动物的质量和速度大小值的乘积,也就是动量,可以被视为物理活动大小的度量。确实,一般来说,冲击的瞬间和运动的传递过程中,物体在冲击之后的速度,或者在给定传输速度下的质量大小,与爆炸物的动量成固定比例关系。如果有人想要使用这种效应的大小来计算物理活动的大小,他就需要找到测量动量的准确方法。毫无疑问,测量依赖于对物体活动的定义。同时,如果你想要使用与物理学、力学、生理学,甚至是日常生活中同等的术语,并遵循它们的准确含义,就只有动能而非动量可以用来测量物理活动。

    我们在这里所说的动能,经常会被误解为哲学中所谓的生命力,因为它暗含了测量上的一个确切概念,以下将要提及。

    一个粒子的动能,不考虑其是否受到原子能影响,是通过把它的质量m与速度v的平方相乘获得的,所以一个特定粒子能量的表达式就变成了mv2。[1]那么整个系统的动能就是每个组成部分的动能之和,因此如果一个系统中有三个或者更多的粒子,每个粒子质量分别为m、m′、m″……速度分别为v、v′、v″……就有:

    总动量=mv2+m′v′2+m″v″2…

    这个公式通常可以按照如下简写,适用于任何粒子总数:

    ∑mv2

    需要注意的是求和符号∑不是对一些相同的mv2乘积求和,而是针对带有不同质量和速度的粒子,分别计算乘积之后再进行求和。

    这个时候不必去考虑在测量中,所引入的各种概念分别包含了什么样的规则,而是应该罗列出一些更突出的值得我们去考虑的问题。

    和数学动态模型一样,相反方向的速度一定携带负号。因此显而易见的是,如果有人关注当一个系统中的粒子们活跃地摆动时,活动的总量在一定的时间内将会发展到何种程度,他就会发现活动的总量接近于零,前提是他将动量作为物理活动量的衡量标准。因为运动的速度有向前,也有向后的,所以也就有了相反的符号,结果当它们乘以它们的质量(质量永远是正值)时,乘积的结果在加和过程中就正负值抵消了。但这种抵消并不是在每个个案中都是合理的,例如,对于朝一个方向和相反方向需要同等的能量的运动而言,这种抵消的结果就会是零。不同的是,如果把动能作为衡量的标准,由于速度进行了平方的计算,所以无论正值还是负值,平方之后都会得到正数,这样向前和向后的运动都会对物理活动量的总和产生贡献。

    其次,我们应该注意到,只有通过身体输出或者完成任务所做功的变化,我们才能获得其中所消耗的动能,从而对身体的活动进行测量。因此这就可以把动能和日常生活、粒子力学中的概念联系起来。根据做功的普遍概念,当重量被举到两倍或者三倍以上的高度时,人或机器必须产生两倍或者三倍的功;假如当前除了举重之外,还包含了其他的做功类型,那么我们还要把举重转换成该类型的功,以进行等同的比较。

    依据已知的原理,一块石头被垂直地被抛出后到达一定高度(除去空气阻力)时,与其被抛出的瞬间被赋予的初始速度相比,并没有成比例增加,但是对于速度的平方而言却非如此,与石头被抛出时相比,到达一定高度时的动能成比例地变化了。然而,将石头被抛出时所赋予的速度(或者在快速增加时的速度),同样赋给一块被提升的石头,那么速度的增加就会变得比较缓慢。通过提升达到高度的多少,和通过抛掷达到的高度一样,依赖于作用于石头的动能,或者更广义上来说,依赖于通过重力作用产生的负荷或重量。

    总之,除去一些不太重要的细节,为了爬上高山,一个人必须储存足够的动能以完成向上的运动,这种动能的大小就相当于把他提升到目的地所必需的能量。

    因此总体上来说,不管物体当前运动的方向如何,某个特定时刻下特定质量物体的动能,可以用当前高度来进行表示,或者是一个速度相同、质量相近的物体将要到达一个既定点时,它的动能也可以借由与重力相反方向的特定速度来表征。需要注意的是,上述结论必须符合以下前提,即我们假定先前使物体加速的作用力已经停止了作用,而且除了直接与重力抗衡的作用力之外,没有新的作用力存在。对于物体向上运动轨迹中的每个点来说,我们可以根据物体将要到达的高度与起点之间的差距,来恰当地表征动能,这与第一个观点并不矛盾,在这一过程中,如果动能不断地下降,那么物体所能够到达点的高度也就相应地下降。

    把某物抛出或者将一个重物举到半空中,与重力相反方向的速度不断地下降,最后一旦到达特定的高度,所有的速度就降为了零。因此,物体无法超越那个特定的高度点。除了与重力相反方向的力之外(或者算上这个力),在弹性、摩擦以及所谓的媒介物产生的阻力,或者其他的阻力研究中发现了一样的效应————在所有的情况下,这些阻力都必须克服,就像存在着克服重力的作用力一样。但这仅仅是因为克服一个给定的作用力(以及因此所做的功),与在真空状态下抛掷或者举起一个给定重量所使用的动能是相似的情况。所有消耗了同样数值能量的作用力,一定会被认为是相同的。

    让我们想象一下,假设物体在真空中运动,没有媒介物或者反作用力的阻抗。那么它将会在速度没有损失的情况下,借助初始速度产生的动能无止境地飞行,而且这个过程中也不会用尽任何能量。尽管我们称其为运动而不是做功————它总是事先假定该物体在运动中需要克服反作用力并因此消耗能量————而动能始终能够维持物体运动所需要做功的水平,以此对抗反作用力。在许多种类的做功过程中,例如用马拉货车的过程中,动能的量保持恒定,但仅仅由于阻力作用,耗尽了货车从马的运动中所获取的能量。如果没有阻力在额外地消耗着能量,货车的动能会不断增加。

    动能在系统中可以通过各部分之间共同的交互作用而增加,正如在行星系统或者每一个组织中的情况一样;它可以通过固体或者液体媒介中的传递和传播运动来进行传递和传播;最终内部产生的动能可以通过外部影响来调节,就像是两个天体构成的系统所产生的动能受到第三个天体的影响,或者诸如一个生命体内部的动能受到外在刺激的影响。

    总之,就我们目前为止谈到的,不仅动能的产生方式,而且它的传递、传播与调节方式也依赖于它的各个成分之间的交互作用。有机体的交互作用产生了动能,正如给予将要进行石头投掷动作的手,石头与手的各个部分产生交互作用,手的能量就可以传递给石头,因为每种运动的传递依赖于各个成分间交互作用的统一程度。

    整个自然就是一个单一的系统,该系统的每个组成部分都持续地作用于其他部分,在这其中,各种分系统产生、使用以及传递给其他分系统以不同形式的动能,无论是发出还是接收能量,都需要遵从分系统联结的一般性原理。因为在精确的自然科学中,所有的物理现象、活动和过程,不管它们可能被称为什么(不排除化学性、不可预估的和有机的物质),都可以被归结为运动,无论是大型的还是最小规模的粒子运动,我们都可以发现它们的活动或者是动能的强度标准都是能够被测量的,如果不能够被直接测量,那么至少可以利用任何一次动能的效果,通过计算原理进行估计。

    关于物理现象的本质,例如我们的感觉是依赖于何物而产生的,我们的思维伴随着何种活动,我们从一开始对答案就感到非常不确定————简单来说,这就是一种心理物理学的加工过程————但至少我们非常确定该使用何种方法来测量这种本质。假如说这些研究内容尚在物理学中寻找一席之地,那么对于衡量这些本质的能量研究亦如此;如果做不到,那么它们对于我们就没有意义了。

    这个事实是非常重要的,原因有两点:首先,它为我们提供了清晰的分析基础,其次,它提供给我们以建立原理的基础。

    如果我们需要清楚地把心理物理学和物理学、生理学以及日常生活联系起来,就不得不了解心理物理过程中各种特殊属性的大小,即使我们对于这些属性知之甚少,我们也可以基于动能研究领域内总结出的基本条件和原理,建立起广泛且有效的结论。就目前来说,疑问就产生了,即这些心理物理过程是否终究会对这种一般原理的适用性形成挑战,现今的观察研究不得不处理这个问题。

    因此,让我们来看看动能研究领域内一些重要的基本条件和原理,它们在观察研究过程中给我们提供了线索,或者给我们提供了在这个领域中同类研究的应用性结论。

    因为能量的大小会以不同的形式进行传播和转换,所以我们会看到一个系统的表面可能是十分平和的,但是仍会在不易被察觉的微小运动中产生大量的动能,效果经常与大型的运动相当。

    当一只大钟被敲响时,我们看不到它轻微的振动。然而这种振动的动能(加上一些辐射产生的热量)表示了用以击响这只钟所需要的总能量;如果这种来回振动的运动可以在一个方向上累加起来,那么这只大钟将会被击打出较远的距离。

    一个从表面上来看相当不重要或者不存在,但在现实中却无疑是很重大的问题是:动能可以经由化学反应的活动产生。我们发现在化学反应产生的时候没有特别的运动发生,但是它会伴随着光和热现象,光和热是由于以太[2]的振动而产生的,我们可以假定在反应中具有一定分量的粒子被振动所激活,并且与以太相互传递着这种振动。这就像是从表面上看,打击的能量似乎在大钟无形的振动过程中消失了一样,相反,只要有合适的媒介存在,这些细微的小型振动所产生的能量就会爆发成为可见的大型运动。

    因此蒸汽机车缓慢移动产生的总能量仅仅是动能形式的改变,它是由燃料燃烧所引起的微小振动改变而来(包含了弥漫其中的以太),产生的能量随后被传输到引擎的各个部位,最后带动整列机车。另外,这里所提到的能量尚是可见的状态,一旦燃料的无形运动消失,这种可见状态也会随之消失,因此为了保持这个过程继续,就必须稳定地维持供应燃料或是其他新的能量来源。即使没有引擎和机车的存在,能量的持久供应也是必要的,因为振动会传输到环境之中,或者是辐射到周围的空间里,最后自行减弱。引擎和机车的加入只是将这些动能赋以特殊的用途,否则它们将会白白地流失。

    因此类似地,人通过四肢实现可见的运动所产生的动能,只不过是新陈代谢过程中,由化学反应产生的微小内部运动变换得到的结果。人们在每一种外部形式的做功过程中都会使用到一些内部产生的能量,因为身体会在运动中耗费能量,而且即便没有可见的运动,人们在向外界传输、分泌排泄、辐射的过程中仍然会不断地丧失能量。以上情况造成了人必须通过不断的新陈代谢过程进行能量补偿,以使有机体正常运转。

    就像微小振动产生的动能不能被忽视一样,不可见运动产生的动能也不能被忽视,可以说这二者是能量界的重要组成部分,因此与可称量物体相比,不可称量物体运动的动能同样不能被忽视。相反,不可称量物体运动的动能在能量界中占了很大的比重,它们在我们可知觉到的可称量物体相关事件和结果中均扮演着重要角色,这是由物体之间能量的转换和传输所决定的。

    虽然我们必须假设以太粒子的质量是趋向于零的,但是并不表示它们的质量就是零,而且我们赋予这些粒子以不可想象的高速度进行补偿。这些振荡之后就会产生大量的能量,当达到一定的分量时,就可以执行重要的做功过程。

    无论是在物体之间还是在各个子系统之间传递,无论物体是否可称量或不可称量,无论是经历了冲击、摩擦还是媒介的阻力等任何外在形式作用力的改变,动能均既不会增加也不会消失。

    似乎每次打击、每次带有阻力的摩擦作用后,动能就会减少。所有的石头落到土地上后,它们的动能似乎就消失了。琴弦振动产生的动能由于空气阻力的作用就逐渐消失了。如果拉车的动物无法不断地从自身的新陈代谢过程中获得能量,然后将这种能量赋以马车车身,那么车身在与地面摩擦的过程中就无法保证动能不会下降。

    所有可见运动的能量都会流失,在可称量或者不可称量部分的不可见振动中我们将会再度发现它们的身影。后者类似于热量的特定产物,所以对于可称量部分而言,由于打击、撞击等类似行为而损失的能量,可以通过热量的精确测定进行等价替换。在可称量的物体范围内,如果有动能消失而转换成了热能,那么通过恰当地利用这些热能,可以使原有的动能再生。的确,对于某种可能与其他可称量基质相同的物体基质而言,它的振动能够导致热量表现产生的最重要原因之一,是在运动传输的过程中,一旦可称量基质发生能量损失,就会有一定的热当量产生,反之亦然。

    格鲁纳特(Grunert)在《数学档案》(Archiv für Mathematik, 1858, p.26)中提及了1856年5月30日皇家科学院正式会议上的一次讲座,这就是鲍姆加德纳(Baumgartner)所作的《热功当量定律对自然科学的意义》,鲍姆加德纳对热功当量理论中的原理进行了大众化的解释和讨论,这些内容无疑将受到一些人的欢迎。从中我想要引用一些文字。演讲人假设功的单位为1英尺磅,即把1磅的物体举起1英尺所需要做的功,而热量的单位则以将1磅的水从0℃加热到1℃来进行衡量。

    通过消耗一定数量的热量,就会产生一定数量的功,反之亦然。通过众多严谨的实验,其中研究者操纵部分功转换为热能,部分热能转换为功,并且使用了不同来源的热能,结果发现消耗1个单元的热能等价于1367个单元的功,反之亦然。这个结果以奥地利的度量衡标准为基础。

    转换成日常语言意思就是:将1磅水从0℃加热1℃所需要的热能,与1367磅重的物体下降1英尺产生的机械能相等。

    功和热能的相互之间的转换不会反复无常或者偶然地发生,而是遵循特定的原理,这些原理表述了能量交换发生的条件。表面上看来,流向物体多少的热能,就只能转换为多少量的功。然而,只有在热量从较热的物体向较冷的物体流动的过程中,这种转化才能发生,也就是说只有存在温度差时才会发生。而且,增加的热能可以被分为两部分。一部分用以提升温度,保持体积恒定;另外一部分发挥功的作用,例如推动一个负载。如果不是这种情况,就不会有力的交换。这也就是为什么当一定质量的气体膨胀时,它就会变冷并因此克服了压力,而假如气体膨胀发生时不需要克服阻力,它的温度就会保持不变,这与气体向真空流动时的情况是相同的。

    由于燃烧过程中的化学作用,假如所有的热能均被用以产生蒸汽或增加气压,并且全部转换为功,那么每一粒重的煤块在蒸汽机或者气缸的锅炉中完全燃烧时,就会产生0.908单元的热能或者1241英尺磅的功。

    有人会说全世界的动能完全保持恒定,这是不正确的。只有在活动中,转换和传输的运动过程中,动能才没有发生改变,这使得我们需要考虑到热量产生的等价性问题;但由于在这一过程中运动不断地改变,导致作用力的效应不断改变,所以动能的量的确发生了变化。如果一个物体在这个过程中和另外的物体相撞,当在假设计算中考虑到了可称量粒子的冲击效果,以及加上了由此次撞击产生的热当量的前提下,那么两个物体的总能量在撞击前后是一致的。另一方面,我们看到,每一颗行星在接近太阳的时候动能会增加,在离开的时候动能又会减少,摆动着的钟摆在下降冲程中增加动能,而在上升冲程中减少动能。但即使在这个例子中,动能也并没有保持不变,不过在第一个例子中太阳和行星,以及第二个例子中太阳和地球[3]组成的系统中,两个物体的相互作用力影响下,一旦两个物体回到相对[静止时]的位置状态,动能就会被再次以同样的大小存储。现在有人发现,许多其他系统在其内在作用力的影响下,会发生循环或者振动运动,以至于系统的各个部分随时间的流逝总能回到给定的位置。普遍应用于以上例子中的原理是存在的,那就是被大家所熟知的动能守恒定律。根据这个定律,一个单独系统中的能量无论先前经历了何种形式的波动,只要当系统的各个部分回到原来的位置之后,能量总是会恢复为原来的大小。这种恢复的发生是不考虑其内部手段和方式的,因为在复杂系统内,恢复机制可能确实并不总像我们引用的基本系统中的机制那样简单。

    假设我们打制一块钢板,那么通过打击赋予这块钢板的动能和产生的热能一起,完整地表示了人体为了打击钢板而消耗的能量。如果我们面对的是一个有弹性的物体,那么通过打击产生的能量就能驱使物质粒子来回振动,当粒子通过平衡状态下的初始位置时,总能够重新获得它的初始动能,但一旦它离开了初始位置,在整个振动过程中就不能保持原有的能量了。另外,如果我们面对的是弹性差一些的物体,比如说一块铅,它将会永久地保持形状不变,通过打击使得物质粒子偏离平衡位置,但是动能却不可能重新恢复。与前面的例子相反,在这个例子中动能确实丢失了[如同热能一样],可以说,能量已被用来导致粒子位置的永久改变。

    动能的守恒定律既不能够阻止系统,也不能阻止无限宇宙系统中某部分的能量发生暂时性的改变、增加或减少,也不能够阻止发生永久的改变。只有一个确定的事实:在系统内部作用力的影响下,先前任何大小的波动驱使系统的某个部分回到初始位置时,它的能量都会重新恢复到原有水平。但我们不能保证这种恢复是普遍现象,因为在很多场合并不会发生这种情况。根据万有引力定律,如果有一个由三个物体相互吸引构成的简单系统,那么能量的恢复就永远不会发生,除非存在特殊的环境条件。众所周知,太阳系中的行星,由于它们公转周期的不可比较性,也就是它们从未回归至相对于其他行星以及太阳而言的相同位置,只是在一段较长的时间之后可以回到大致相同的位置。因此,我们所在行星系统的动能可以按照与原有动能相近的量进行恢复,而不可能恢复到与原有完全相等的量。

    毫无疑问,在无限的宇宙中,系统中某个部分暂时或者永久丢失的动能,通过其他部分的同步能量增加过程,或多或少地保持了整个系统的平衡;但是没有一个定律能够保证经过上述这样此消彼长的过程后,整个系统的能量能够永久而且精确地补偿至原来的水平。前述假设是不成立的,因为还有另外的原理存在,即在新的位置上,物体间又建立了与先前截然不同的稳定关系,而不是在原有的相同水平上保持恒定。

    不仅仅是存在的动能大小,还需要在此基础上再加上由广泛存在的振动产生的能量————我们可以简称它为势能,尽管通常的表达是张力————两者之和才是每个系统为了移除外在影响所需能量的恒定大小值,因此,不可否认在这个世界范围内都是如此。

    为了描绘一个孤立于所有外在影响的物质粒子体系,我们选择了一条在真空中不受任何阻力而振动的琴弦作为例证,将它悬挂在两个固定点之间,其间它没有传递任何运动以所悬挂的固定物。弦的动能是变化的。下落到最低极限位置时动能降为零,但势能在同时达到最大值。弦从每个点向平衡状态位置运动过程中,它就产生新的动能并且不断地增加,直到在经过平衡状态位置时达到最大值。在最大位移处,能量确实就已只剩下势能,也就是说已经完全没有动能存在了,但由于存在着振动,也就有产生动能的可能。当弦从极限位置运动至中间位置时,所有的势能都会转换成动能;但是动能增加多少,势能也相应地减少多少。任何动能不再是现成的,除非到达中心位置时,所有的势能都被耗尽的情况下,因此我们不可能在耗费动能的同时还指望它进一步地增加。从这点来看,当运... -->>
本章未完,点击下一页继续阅读
上一章目录下一页

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”