关灯
护眼
字体:

第八章 感受性的测量方法

首页书架加入书签返回目录

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

    根据第六章中得出的原理,绝对感受性可以通过绝对刺激强度的倒数即集中感受来估量,也可以通过引起相同大小感受的绝对刺激强度的倒数即广延感受来测量。为了测量简单的差别感受性,可以用刺激差异量的倒数或者引起相同差别感受的差异程度来表示。相对差别感受性则可以用刺激比率的倒数,或者引起相同大小感受差异的刺激程度来衡量。

    没有区别简单与相对差别感受性的方法,因为在这两种情况下我们都必须确定引起特定感受差异的两种刺激量。在这个时候,我们要关注差异的绝对强度或者刺激的比率,以此来用两者之一的倒数测量感受性。每一种方法都具有自己的意义。不过现在,讨论获得前一种结果的方法就足够了。

    在这些定义的基础上进行测量,也就是假设我们在各种条件下都能够切实准确地判断感受与感受差异的等价性,并且能够对它们进行陈述,这些任务乍一看没有那么容易。然而正如我们之前提到过的,大家都知道利用光度计的测量方法是基于对感受等价性的判断,就音乐而言,一个人必须经常判断两个音调的一致性,以及两个音调间的差距是否相同,也就是音差。我们现在要以某些普遍的方法来证明感受差异的等价性。事实上,相对于绝对感受性的测量方法,关于差别感受性的测量方法迄今为止已有很大的进步了。因此我们要开始主要研究这些方法。

    对于这里将要提到的这些方法,重点讨论对它们本质的一般理解以及它们之间的相互关系,并对保证它们准确性的共同必要条件进行介绍。我们关注的重点是它们在实验与计算中的应用,这在后面几章中将进行详述,并且对所获得的结果做出解释。然而如果我试图阐述在更周详的调查中必须考虑到的特殊实验与计算方法,或者我想为所有可用的规则提供理论基础和实验证据,我可能会破坏讨论的流畅性,干扰那些更关注方法的一般理解而非方法使用的人的兴趣。因此为了更详细地说明这些方法以及基于这些方法的实验系列,我更希望选取《心理物理学领域的测量方法与测定》(Massmethoden und Massbestimmungen im Gebiete der Psychophysik)这本书中的一些内容,并且简单引用一下《测量方法》(Massmethoden),以对目前的这项工作做一些补充。我在这里简单述及的很多内容都在那本书里有详细的论述。你也会发现那里有更精确的理论观点和明确的实验证明。

    差别感受性的测量方法

    概述

    当前有三种测量差别感受性的方法,为了简洁起见,我分别称之为:

    (1)最小可觉差法。

    (2)正误法。

    (3)平均差误法。

    首先,我们检验这三种方法在同一项任务中的表现,特别是区别重量差异的准确性。我们希望以通过这种方式的介绍,引出对这些方法的初级表面的理解,尽管实际上到现在为止,人们只使用了前两种方法。

    在使用最小可觉差法时,我们要通过提起两个容器A和B来比较它们的重量,这两个容器中水的重量有轻微的差异。如果重量的差异足够大,就能被感觉到,否则就不会。最小可觉差法的主要目的在于确定多大的重量差别才能刚好被感觉到。我们可以用这个差异量的倒数作为感受性水平的指标。

    这种方法的一般操作如下,即将刺激从容易被觉察降低到刚刚可觉察的水平,以及再将刺激从不可觉察增加到刚刚可觉察,两者完成相同次数的操作,取平均值作为结果。

    如果有人采用很小的重量差异进行多次重复实验,就会经常弄错差异的方向,即较轻的容器会被认为较重,反之亦然。然而如果重量增加得越多或者感受性越强,正确的次数就将大于错误次数或占总次数的比例会增大。正误法从本质上讲,它的目标在于确定在各种比较感受性的情况下,想得到相同的正确判断与错误判断比率,或者正确判断与总判断数比率时,所需要增加的重量。这些不同情况下感受性的程度用这个附加重量的倒数表示。

    不确定的情况需要删除,但是应该半数计入正确判断,另外半数计入错误判断。

    以给定容器的实际重量作为标准,被试可以只根据感觉判断来匹配与之相同的重量。一般来说,一个人在判断时会出现一定量的低估。当把一个与被试判定的重量相同的容器放到天平上时,就可以发现这个误差。重复进行这个实验可以得到许多误差数据,我们可以据此计算出一个平均差误。我们把通过这种方法得到的平均差误的倒数,作为重量的差别感受性。这就是平均差误法。

    由于正误差与负误差在相同程度上源于缺乏正确的知觉,因此它们对我们的测量是同样有用的。也就是说它们不应相互抵消,而应该把它们的绝对值相加。

    正如这些方法可以用于重量的感受方面,它们也可用于视听感受等,还可用于广延感受。例如用最小可觉差法测量广延感受性时,需要判断两支圆规的两脚间距的差异达到多少时,才能让被试刚好感受到差异,可以通过视觉或者放在皮肤上两种途径来判断。使用正误法判断两支圆规两脚间距的细微差异时,我们需要记录实验试次中正确与错误的次数。最后在平均差误法中,我们则要确定当一个人尝试匹配相等的两支圆规脚间距时所产生的平均误差。

    这三种方法目的相同且相互补充。在第一种方法中,把区分明显差异与不明显差异的边界值作为最小可觉差;在第二种方法中,需要进行计数的是表面差异(即判断完全随机,有时候是正确的,有时候是错误的反应);在第三种方法中,测量的是感觉不到的差异。

    这三种方法在测量感受性方面存在相对————有的时候不存在————细微的差别。后面我们会看到当我们意在某些感受性测量中寻求感受测量的基础时,这个事实正是最有帮助的。

    就我们现在看来,这些方法均适用于所有的感觉范畴,但是我们还远不能用哪怕其中任一种方法来测量所有的感觉。同样地,这三者中也没有一种可以完全用于测量单一的感觉。

    最小可觉差法过去曾被用于独立的实例中,例如德勒泽纳(Delezenne)用它测试对音差纯度差异的感受性。这种方法应用很广泛,最佳的结果可见韦伯所做的对重量、触觉和视觉空间知觉感受性的研究[1]。就我自己而言,我仅仅在光强度、视距和温度判断领域内使用这种方法做过几个不太深入的实验。

    对于正误法,除了图宾根(Tübingen)的医学生哈格梅耶尔(Hegelmayer)对视觉广度的研究[2],以及伦茨(Renz)与沃尔夫(Wolf)在听觉测量领域的研究[3]之外,我还不知道有其他应用的先例。由于这两项研究都是由维洛特所资助的年轻人所实施的,有人就会认为是他把这种方法分派给他们的,尽管他们并没有明确说明这一点。就我个人而言,我曾使用这种方法对重量判断进行过非常深入的实验。

    在某种意义上,与通过伴随误差的大小来判断观察精确性的方法一样,平均差误法的历史也同样悠久。然而据我所知,这种方法仅在对物理和天文学观察精确性的客观测量中,或者确定这些测量误差源的大小时才会得以应用。[4]该方法从未被认为是或作为鉴别感觉灵敏度的心理物理学方法而使用。但是这种方法对于我而言却是实现上述目标最有用的方法,而且我和福尔克曼(Volkmann)一起用它确定了视觉广度和触觉判断研究的精确性。

    从实际的角度来看,最小可觉差法是三种测量方法中最简单也最直接的方法。它能最迅速地达到目标,并且需要的运算也是最少的。其中最小可觉差是根据等价的感受获得的,即使有人可能需要以重复的方式来加强单个判断和计算的准确性,他可能也只需要较少次数的实验就可以了,因为每一次观察本身就是结果。另一方面,用其他方法的时候,为了得出关于差别感受等价性的结论,需要对很多次正确和错误的例子或者误差的情况进行观察,而且这种判断需要通过计算的过程来实现。而最小可觉差法在多数情况下,例如在基础数据的初步确定中以及当一个人没有充足的时间用于观察时,似乎是一种很好的选择。然而,该方法对更详尽的调查似乎不太合适,也不能像其他两种方法那样达到同样高的准确度,因此导致研究者经常发现自己不得不靠多次的实验来获得准确性。最小可觉差法主要的缺点之一是相比于其他两种方法,由于其基于主观判断,因此对于最小可觉的定义会为产生误差留下更多的空间。最小可觉的定义不可能是绝对的,因为不管是第一个时间点即感受差异变得刚刚可以觉察到的点,还是第二个点即感受差异消失的点,均不能非常精确地确定。一个人的不确定区间与其是否知晓这种感受的存在有关。如果一个人不想把最小可觉的判断标准设定得太高,也就是只接受基于重复实验获得的差异结果,而且非常确定地排除了任何例外情况,这个方法就变成了正误法。如果这样的话,我们就有必要频繁使用一个稍小的差异作为刚刚能被感觉的标准,因为总是会出现差异的方向判断错误,或者是判断不确定的情况。关于这些情况出现的频率必须被列入考虑范围。

    尽管如此,我们仍可以说,经验表明了人能够就构成微小但能清楚感知到的差异形成统一的标准。这个差异的标准能够在不同的实验中足够精确地重复,即使不是完全地复制这个结论,也可以通过重复实验获得理想的结果。上述评论无论如何也不能降低这种方法的价值,因为它们只是为了说明这种方法相对于其他方法的优缺点。可以说没有这种方法,心理物理学就失去了其最有用的工具。在专家的手中,最小可觉差法通过获得的基础数据证明了自己的价值。像我一样的局外人也有充分的机会说服自己相信它的有用性。

    正误法可能是最单调乏味的,如果一个人没有足够的时间和耐心最好不要使用这种方法进行研究,因为少数几个正确或错误的情况不能得出什么结果。尽管如此,通过大量的实验我们能够得到非常不错的结果————实验结果间的一致性较好,并且揭示了感觉领域内的合理关系。虽然需要计算的辅助,但是只有简便易行的操作才能为人们所用。鉴于人们在最小可觉差法中受到简单差异的局限(也就是刚刚可以感觉到的差异),而使用正误法时人们则可以随意选择或大或小的细微差异来测量差别感受性。用这种方法得到的正确和错误次数的不同值可以用于进行专门化的比较。

    平均差误法也需要大量的数据取样以及辅助计算。正误法和平均差误法都具有一个很大的优势就是它们依赖概率论已经证明的定理,而且甚至自己就可以为这些定理的发展提供支持。的确,对这些方法的长期实践激起了我非常持久浓厚的兴趣,并且这种兴趣随着概率论的发展而与日俱增。

    一般考虑的因素和预防措施

    我刚刚简单介绍过的方法可能乍一看去很简单,实际上却是符合原则的,在它们的使用过程中有很多需要考虑的因素和预防措施。它们有的与观察有关,有的则与计算有关;它们还部分依赖于专门化的方法和实验的领域。然而下面的规则或多或少具有普适性。

    在这三种方法中不规则的随机波动发挥着主要作用。有些是操作本身所固有的,其他则是对比较尺度解释中存在的主观因素。如果考虑随机影响的范围,用最小可觉差法确定的差异有时看来似乎很夸张,有时却又缩减了很多。一个人为了确保自己判断的稳定性,他必须选择一个原始值,而这个值从大体上说,比不存在这些波动的情况下的原始值要大得多。由于这些随机性因素导致的主要影响,所记录的最小可觉值就增大了。在正误法中,随机性的影响会使人在两次实验中对同一个重量产生或轻或重的感觉。这种情况与随机性的影响相比,较大重量的影响并不是很重要,因为平均下来,不规则随机波动形成更重和更轻方向影响的几率是大致相同的,正确判断和错误判断的次数就很明显地表现为相等了,或者至少与没有或有较少随机性影响的情况相比,正确判断的次数下降了。最后,在平均差误法中,由于随机性导致的刺激程度会时大时小,但如果刺激变化的幅度越大,我们可以立即看到平均差误也会跟着变大。

    简单地说,根据这三种方法的情况发现,随机性的作用越大,感受性的测量值越小,不存在能够不受随机性影响而得到测量结果的方法。它们的平均值总是作为一个因素伴随在测量中。只要这个因素保持恒定,也就是只要这些不规则波动保持相同大小的平均值,这种影响就不会妨碍我们得到可比性较强的感受性测量结果。事实上,没有这些随机波动,正误法和平均差误法甚至都不能够存在。它们强调了一个重要的需要考虑的因素,即只有那些感受性的测量之间具有可比性的情况下,才能够满足随机影响均等的假设。这条假设要求实验期间外部和内部的条件完全一致。测量中任何的技术改变,都会直接影响随机因素的作用进而导致数据可比性的缺失。同样地,由于内部条件的可能变化,我们无法假设不同个体或者同一个体在不同时间受到相同的随机因素影响。因此每当发现感受性的测量值缺少一致性时,我们必须确认一下这是真实偏差造成的,还是由于没有达到实验背景可比性的要求。

    如前所述,一般来说多次重复实验是必要的,在正误法和平均差误法中,尤其需要大量的测定以得到可靠的结果。这种情况下观察的多样性,与物理学和天文学测量中的同类情况相比,本质上具有不同的意义。使用常用方法形成的几种准确的测量方式,可以相当准确地对物理和天文参数值加以确定。另一方面,在平均差误法和正误法中,大量的测定本身就是准确性的必要条件。每一项独立的观察没有任何意义,几次即使是很严谨的测定也不具有最终的准确性。独立的正确和错误的判断以及独立的误差,实际上分布得很不规则。尽管是在表面上具有可比性的环境下得到的,部分实验数据仍然会产生截然不同的结果。人们经常会惊讶地发现,在实验的主要部分中,这些不规则性产生的结果自身具有相当高的一致性。重点是概率领域的大数定律[5]在这里也适用。只要案例的数量很大,这条定律就可以控制随机性。

    没有比普罗透斯更适合用来比喻我们的方法了,他不是单纯而心甘情愿地回答别人向他提出的问题,而是通过不停地变化自己的外形来回避一切回答。不过通过足够长时间的坚持,人们就可以迫使他给出一个答案。在过去我浪费了很多的时间,尤其是使用正误法时,努力从数个小时或是数天的实验中得出结论,但是却不能得到任何肯定的结果。直到我下定决心每天花一个小时在同一个问题上,并且坚持了数月才得到了满意的结果。

    且不说无法避免的影响,所提到的,几率波动的范围会影响测量值的大小,随机因素的影响必须用频繁的重复来补偿。如果变异性和感受性保持不变,实验就必须坚持下去,直到我们在不同的时间点都能获得一致的测量结果。这样一来,单独的随机差异就会失去影响,而最终的结果也会独立于随机因素。为了确保这个结论,我们要持续或者重复每一个实验系列,直到主要的部分或实验重复在相关的结果上呈现一致。数量级的偏差自然会很小,因此是可以接受的,这就像我们必须接受物理实验中的观察误差一样,因为作为我们方法中产生的观察误差的一部分,这些随机误差不可能被完全抵消。即使在较小的子集中达到一致,我们也不能完全满意,因为这种一致性本身就可能是由于随机因素产生的。概率论事先为我们提供了一种预估精确度的方法,这里的精确度可以从给定数量的实验试次中,在给定的概率水平上进行预估。另一方面,通过观察次数,以及单独实验或系列观察的某些部分所反映的相似性程度,我们也可以计算精确度的范围。

    如有可能,我们应该从一开始就根据预先安排的计划进行实验,以与特定的目标相契合。然而预实验往往对发现测量的最佳条件,以及发现在设计实验程序中应该注意的因素有很大的帮助。如果没有同时观察练习效应的话,预实验也具有优势,即它们帮助我们通过练习的第一阶段,并且避免主实验中部分的早期变异。同时,练习的影响始终都是需要加以处理的因素,留意练习的影响并且从第一个预实验起就要注意发现它的规律,这是极为有效的,因为当练习已经部分发生或者作用达到极限时,后续实验中的练习效应就会很小甚至消失了。

    为了避免获得片面的或者只在特定条件下成立的结果,我们应该考虑环境中广泛存在的可能的系统误差。我经常发现在给定条件下看起来相当常见的结果,却与其他环境下的结果截然不同。[6]如果结果没有在许多不同的环境下得到证实,在判定结果通用性之前我会非常谨慎。然而我的这条准则也导致了矛盾。随着人们实验条件的组合数量增加,可以在每一单独条件下实施的实验数就减少了,因此我们只用一种实验条件所得到的测量结果通常具有较低的准确性。所以,当我们一开始想要研究任何事情时,就要立即保持谨慎态度,可以说如果把程序限制在某些固定的变量上,我们就不能得到任何正确的结果。

    以重量提举实验为例,我们能够研究对于标准重量改变的差别感受性大小。试想一下,一个人用单手提起某个重量并确定了上述这些关系,那么他用另一只手提起这个重量也会得到相同的结果吗?或者如果一个人用一只手提起了一个重量,而用另一只手提起了另一个重量,可以等价替换为用同一只手同时提起这两个重量的结果吗?如果一个人换了提举的位置,或者提举的方式,或者两个重量及其容器的位置又会怎样呢?提举每一容器的速度、时间间隔、顺序即先提还是后提较重的重量,或者提举的高度会不会导致结果的差异呢?如果按照标准重量从小到大升序排列进行,或者按照相反的顺序实施,实验会得到相同的结果吗?用已受到疲劳影响的手臂或者未受影响的手臂,结果有何不同?根据重量差异的大小,正确和错误判断的比率会发生什么变化?诸如此类的问题很多很多。

    所有这些影响的确定实际上属于对重量差异感受性的详尽调查范畴,在关于感受性的其他调查领域中,其他的影响也将会层出不穷地出现,并且需要我们加以研究。每个因素会依次需要一系列合适的实验,来帮助我们对其大小、方向以及对其他环境的依赖性加以确定。

    需要比较不同因素的影响时,我们应该依次进行每一项实验,同一天或者每过几天交替进行升序与降序实验序列,并交替使用较大和较小的差异值。通过改变感受性或者其他原因而导致的实验序列对结果的影响,我们可以加以识别、补偿或者仔细考虑。例如就重量提举实验来说,需要将这个过程应用于不同重量标准、不同比较系列、不同的提举重量间差异等等————所有实验实施的条件。

    例如,如果用一系列标准重量进行实验,我们可以在同一天先进行一个升序的系列,然后再进行降序的系列,第二天先做降序系列再做升序系列。我们还可以在一天只进行升序系列的实验,第二天再进行降序实验,有条不紊地坚持这种交替对完成实验流程很有必要。

    在一些实验中,我会轮流以不同的值开始和结束,而不是一直用最低或最高值开始和结束,按顺序或者倒序进行实验序列就好像数值在一个圆上循环排列一样,在这个圆上可以随意选择起始点。然而预期系列顺序效应的安排所带来的完全补偿作用,可能还无法抵消方法复杂度的提高所带来的负面影响,或者只有在特殊的环境下才有可能实现。

    一般来说,在检验系列顺序对实验的影响时必须考虑不同的条件。这些条件可能部分地互相对立和冲突,有时这个条件有时又可能另一个条件占上风。一方面,注意和感觉器官的活动可以说是在实验开始后的一段时间之后才发挥功能的,然后才开始达到某种一致,在缺少练习的情况下尤为如此。另一方面,被试会变得厌倦、疲劳或者在某些条件下由于不断的练习而导致愤怒。最后在一些限制条件下,适度的练习会使被试从一开始就感觉到练习的影响,而且这种感觉会在长时间的实验系列中一直持续。我们要通过专门性的调查对这些影响各自进行分析。这些影响会自动地在每项研究中发挥作用,因此我们应该尤其防范以下几点。

    除非本身就是研究对象,否则我们就要很好地避免这些条件造成的重要变化(也就是说当出现严重的厌倦或愤怒情绪时,我们不应该继续实验),并且应该倾向于选择那些练习效应平缓或已经达到极限的实验,而不是那些练习效应很大的实验。然而因为长时间连续的实验,无论每天与每天之间,还是各个系列的时段之间,都必须以具有一致性以及能够在给定的时间内完成实验作为前提,在这方面我们必须根据个体和实验条件选择一个最佳的界限。这个界限必须由每个人自己的判断决定。无论如何,我们应该对这些影响进行准确的测定和补偿,而不是避免这些影响,因为这些影响是绝不可能消除的。对实验试次从方法学角度进行合理的安排,可以很好地控制它们的影响。想要了解详情可以参见关于每种方法的讨论。

    正如条件的系统改变所具有的帮助性和必要性,为了探究它们的差异造成的影响,我们需要在最大可能的前提下获得它们的一致性————这些数据可能不容易获得,因此允许数据产生一定的变异————要把所有这些实验结合起来,以得到一套给定条件下的一致性结果。即使可以控制相关的外部条件,内部条件也不可能完全得到控制。感受性本身以及某些其他起次要作用的内部条件中仍然会存在变异性,这些变化的原因既无法加以计算也不能被移除。这个事实导致了两种可能的考虑。第一种是如果我们不能通过数据本身确定其可比性,就不能在没有进行进一步调查的情况下,得出不同时间得到的测量结果具有可比性的结论,即使这些结果是在相同的外部条件下得到的。第二,为了分别检验这些因素,应该把较长的实验系列分解为几个部分,这不仅要根据不同的实验条件,还要根据不同的时段划分。一般来说,比起一次性得到整个未分解实验系列的结果,我们把每个实验片段的结果加以组合计算更为理想。

    将实验分解为几个部分有其优势,这让我们能够估计结果的恒定性是变大还是变小,以及获得可能存在的由于练习所带来的变化。尤其是与我们把观察作为一个整体时相比,它从数学角度给我们提供了一个更好地剔除内部干扰作用的机会(这种干扰在较长的实验系列中通常在相反的方向上起作用)————这一点我们在后面关于方法的专门讨论中可以看到。

    由于较少的观察次数,我们对部分实验进行数学处理的方法所得到的结果,比我们使用所有实验得到结果的可靠性确实要降低很多。但是根据概率原理可以看到,将实验分解为部分所损失的可靠性,可以在这些部分的结果被整合后得到恢复。因此前面提到将实验分解为各个子群的优点依然存在。

    然而另一方面,分解的方法使对结果的处理和报告更加复杂了。在正误法和平均差误法中,子群中所包括的实验次数对所获得的数值具有影响,这可以通过理论和实验得以证实。当实验次数增大时这种效应就会消失。如果实验次数很少时就必须对数据进行校正,总是使用相同的实验次数也有助于减少不良的后果。

    由于每一个长期的实验系列都会持续几天或者几个星期甚至几个月,我们应该以尽可能规律的时间间隔安排实验,如果可能的话,在分解时分实验最好包括相同的实验次数,对子测验要进行相同并且均等的安排。这样对顺序的严格遵守,不仅非常有助于使得不同阶段进行的实验具有可比性,并且维持了它们的关系,还可以避免实验条件可能形成的混乱和意外事件。而且用上述方法还能够简化计算和促进观察法的使用,但是如果一次用一种顺序观察,另一次又用另一种顺序,上次的实验试次数那么多,这次的实验试次数又这么多,这次用这种实验条件,下次就用另一种实验条件,完全置严格的规则于不顾,那么观察的有用性在各个方面都会大打折扣。在用我们的方法随时进行的有规则的实验过程中,需要组织和保持的细节规则越多,带来的好处就变得越明显。

    此外,如果一个系列的实验持续几天,大多情况下我会把它们安排在一天的同一个时段,因为睡眠或者吃饭所耗费的时间可能影响我们要调查的感受性。这种影响很有可能被忽略,尤其是当背景环境总是相同时。尽管如此,这个因素应该首先被单独进行调查,在完成调查之前就应该引起注意。无论如何,在实验一般规则中必须注意到这条预防措施,即保持实验试次间在时间上的严格顺序关系。

    因为根据我们的方法,判断应该纯粹地基于对感觉的观察,我们应该注意判断不能由一个人的想象或者对结果的期望而加以确定————简而言之就是想象的力量。另一方面,我们也不能太过盲目地进行实验以避免想象的可能影响。我们的方法为这两种错误的产生提供了机会。

    在能力范围之内,我们应该合理安排实验条件的顺序、观察值的记录以及误差的合并或正确错误判断的加和(还有基于此的所有计算)以排除其他不可避免的失误。由于涉及大量的记录、加和与计算,我们应该采用重复和其他控制方法。在记录和使用数据本身时,一定要注意绝对的诚信。

    这几条规则乍一看去并不起眼,但细细看来,其重要性和困难度都大大提升。根据我自己和同事的经验,我不信任任何没有经过重复或其他方法检验的加和或计算。即使重复地再计数与再计算,我们往往也会如校对中一样容易出现忽视误差的情况,尤其是当用相同的方式一项接着一项进行时。在这方面我们怎么强调注意和谨慎都不为过。无论重复或其他检验在操作中变得如何令人厌倦,为了不因应用中的失误损害谨慎观察的好处,这些重复和检验措施还是很有必要的。

    然而,即使在进行任何记录前,我们也很容易在条件的系统变化安排过程中出现失误,这种变化通常是有必要的,往往可以通过打乱条件的序列,或者在没有必要改变的前提下继续进行几个子实验。因此我们应该将对这些内容的仔细检查核对作为一项常规措施。

    关于记录的诚信问题,我们总想————并不是想要篡改结果————剔除异常值,例如平均差误法中由于注意力不集中而导致的巨大误差值。这个步骤没有基于任何原理,也没有什么限制,但这会仅仅由于模糊的表象就产生武断的决定。如果可能的话这种情况应该加以避免,但如果情况已经发生了,我们就应该使用大数量的实验试次寻求补救。控制随机因素的或然律(正误法和平均差误法也依靠它得以成立)预期到特殊事件很少发生的情况。把这些意外情况排除于计算之外没有什么好处,因为计算本身是必须基于这些与概率有关的定律的。当然在长时间的实验系列中,使注意保持在完全不变的水平是不可能的,即使我们已尽力保证它的一致性。这些意外的变动本身就是随机波动性的一部分,它们是这些方法所固有的,我们不可能通过任意手段改变或然律所产生的影响,因为它适用于大样本。

    记下观察的日期很重要,不仅出于我对整齐有序的偏好,更重要的是因为在实验过程中可能发生的感受性周期性和持续的变化,只能用这种方法在结果的汇集和应用中得到识别和总结。我们最好也记下所有的例如温度这样的次要条件,这些条件也可能影响到实验的成败或结果的可比性,即使当这种影响还没有得到证明的时候。就这方面来说,做得过多比做得太少要好。

    有两个或更多的观察者报告汇总他们的研究,将对于我们的工作尤为有利。他们能够互相补充、帮助和检查。对于一个观察者而言,想要独自成功且彻底地从事一个单独的感觉领域或其中某一重要方面的研究是不容易的。分工对于这项广泛性的任务而言是很有必要的,正如将不同时间所得的不同结果整合起来一样必要。在某些条件下,由于技术原因需要两名观察者(或者至少是一名观察者和一名助手)的直接合作。最后,在我们的研究领域里,由于存在这样的风险,即研究结果主要依赖于观察者的个性,所以一个观察者得到的结果要经过一人或更多人的检验,这是很重要的。因此根据特殊的环境,分工可以通过观察领域的划分、共同参与同一实验,或者通过整个实验的独立重复等方式良好地执行。

    有人可能会说在我们的工作中,通常没有单个观察者的结果会被认为是确定的,即使这个结果是由最可靠的观察者得到的,除非该结果得到另一名可靠观察者的检验,因为一名观察者的可靠性只是可以保证他自己获得结果的诚信和精确性,而不能保证他所观察到结果的可靠性就能推广到其他所有结果。这种一般化的观点认为,虽然存在某些关系和定律事实,但我们可以从一开始就假定它们不仅仅是关于个性的问题。

    根据这些观点,可能有人说在共同的任务中几名观察者的合作努力是如此重要,但对于实验心理物理学测量结果而言,它们还只是由观察者在协作者或助手辅助下得到的,这种局限性会导致结果有效性不高。不过,正如对任何观察的独立检验都非常重要一样,在对最小的干扰、尽可能一致的条件,以及对时间、实验条件、实验序列进行了最充分控制的前提下开展该领域的观察也同样重要。我们应该尽量避免对实验条件的先验知识所带来的风险,因为它们会提供想象的线索进而导致结果的歪曲。由于某种原因,在不需要助手的情况下却勉强让其加入是做无用功的体现,正如一部机器的复杂度在不必要的时候也就变成了妨碍操作的特征。在关于测量方法的专门性讨论中,通过关于条件的本质和在这方面的已有经验,我们会有更多的机会回到这个话题上。一般观点不能成为特定规则的坚实基础。

    实验的时间与空间关系:常误

    由于我们的方法由两个级别的比较构成,连续的呈现比同时的要好,尤其是因为当注意不可避免地在两个级别中转换时,同步呈现几乎不可能实现。因此如果可能的话应该对实验进行合理的安排,因为尽管观察一个紧接着一个,互不影响,但在观察者的记忆中会发生叠加的情况。正如韦伯说过的,用这种方法比较大小的能力是很奇特的,必须等到内部心理物理学未来发展到一定的程度,才能得到解释。现在我们必须以其存在的事实为讨论基础。

    因为被比较的知觉在时间上不是完全吻合的,正如它们在空间上不完全吻合一样,我们通过改变感知器官的条件而发现了影响测量的效应。我把这些条件简称为大小比较的时间和空间状态条件。它们是构建精确的感受性比较测量法的主要困难来源。在这些方法的发展中,必须特别注意对这些困难的测查和消除,通过数学和其他流程处理后,将可能获得比初始状态下更多的结果。迄今为止,相对于主观的查证,我们在这个方向上所投放的注意力要少一些。

    一般来说我们能够谈及它们所涉及的时间关系:(1)每一个差异大小被感知到的时间,例如在重量提举实验中提起一个重量时,或者在距离判断中判断了一个距离,等等;(2)在感知一个对象大小与另一个对象大小时允许经过的时间;(3)时间顺序,哪一个先被感知;(4)在一个人做出决定之前重复比较次数的多少。通常,习惯会给这些条件带来某种一致性,在个别实验中可能发生的微小差异的影响从长远看来会被平均。在计时器的帮助下,系统的实验实施能够有助于恰当地产生完全的一致性和可比性。通过有意地改变条件,我们可以观察到它们的影响。迄今为止有关这个领域的工作很少。但我在用正误法进行重量提举实验的过程中,仍注意时时顾及着这些因素。

    此时我仅仅是泛泛地谈论被比较对象大小的空间关系,这本身没有什么意义,因为比起时间关系,条件在不同方法和研究领域下的变化甚至更多。我只是做一个预先评论,我们需要特别关注感觉器官的配对性质,一方面,因为这在是以单独而不是合作进行的方式前提下,为配对器官的感受性程度提供了比较的机会,另一方面,就其合作来说,因为使配对器官在被比较对象间保持一致状态并不是件容易的事情。

    因此,当需要判定的一个容器重量以及所使用方法中的正确次数改变时,差异就因此产生了,这个差异依赖于待比较的重量是在左边还是右边的容器中。这种差异的产生不是因为人的右手或左手具有什么特异功能,而是因为用一只手提起一个容器,另一只手提起另一个容器,两只手很可能具有不同的感受性。如果用同一只手先后提起两个容器,能够看出在两个重量间切换时这只手(臂)会自动改变提起时所达到的位置,因此它提举两个重量的模式也发生了细微的改变。正如我可以通过实际实验所证明的那样,实际情况对结果是很重要的。在通过眼睛使用平均差误法判断距离的实验中,用以匹配其他距离的标准距离是在其他距离的左边还是右边、上边还是下边,都会造成差异。在辨别皮肤上两点间距的匹配实验中,当一个人在自己的身体上做实验时,是用右手抓住代表标准脚间距的圆规,而左手拿着另一支圆规进行判断,还是颠倒过来进行,对于实验结果也是非常重要的,即使当使用带柄的圆规时也是如此,因为在某种意义上,使用圆规的方式可能发生改变。其他情况下也是如此。

    时间和空间条件在一系列给定的实验中是保持不变的,不过当需要比较的差异程度不同时,它们可能发生变化,但在最终获得的测量结果中,它们为一个我们通常称之为常误的概念提供了基础。

    在重量提举实验中使用正误法,当其他条件都相同时,先提起被比较的重量所在的容器多次,与后将其提起相同次数时的情况进行对比,常误就得到了证明。在一次实验中正确判断与错误判断次数的比率与另一次实验中的相比,会有很大的差异。同样在实验试次数目非常大的情况下,较重的重量放在左边的容器中和放在右边的容器中相比,也存在着差异。[7]当用平均差误法测量通过眼睛或触觉来判断距离的感受性时,由于在经过多次实验后,被试判断结果的平均数与给定的标准距离仍然不一致,促使常误就变得很明显了,但是由于所比较距离间的时空关系逐渐趋于稳定,常误将会沿着正向或者负向发生可见的变化。在这种关系中,我们还发现,正误差的总和(即偏离标准的正向偏差的总和)经常与负误差的明显不同,而不是在绝对值上相等。这个差异很大,不能归于不可补偿的随机误差。

    有人可能怀疑这些结果,把这些观察归因于想象的影响。然而,在亲身实验过这些方法后,他会很快相信虽然他尽了最大的努力,自己仍无法逃避这些常误。由于我在这种关系中所观察的结果确确实实地把想象的影响排除了,我必须承认这些实验中非常意外出现的常误,在一开始就令我最为迷惑,在我设法消除它们之前,也是最令我尴尬的事实。即使是今天在这个领域做了大量的工作,尤其是在对重量和触觉进行了测量后,我还是不清楚它们的最终原因,我确定的只有它们存在的事实。之前曾提到那些重复我实验的研究者们,也发现了相当一致的结果。

    有人可能会注意到,常误的存在仅仅是将由我们的方法得到的测量结果复杂化,但不会使结果变得不准确。如果误差真的是恒定的,我们可以通过适当的方法将其排除,同时也可以准确地确定其数值,我会在后面针对单个方法的讨论中加以说明。

    不幸的是,严格来说,常误的恒定性也不高。关于先提起放在左边的容器的实验,抑或右边或左边距离的判断中,我今天所做的有关哪边较大哪边较小的判断,跟另一天的结论并不总是相同的。此外,即使外部条件保持恒定,内部加工也会发生惊人的变化。这些变化很容易随着我们的方法而变化,但是当谈到最终结果的精确性时我们就会遇到困难,因为由于常误而产生的变异性与平均差误法中纯粹的可变误差产生了混淆,并且污染了可变误差。在正误法中,误差以另一种方式始终影响着测量。因此,我们要投入最大的精力来排除变异性,或者通过对观察的设计或处理尽可能使其无害(类似于化学中的分馏法)。

    尽管有这些因素存在,但我们不可以将由常误的存在导致我们方法复杂化的情况视为缺点,而应该将其视作一项重要的优点,因为常误的确定本身就是心理物理学测量可行研究的一部分。毕竟它们的影响对于与感受相联系的因素而言,是非常典型的且应该得到测量。然而同时也存在将它们排除在差别感受性测量之外的机会,这也是我们现在所关心的问题。因此,我们不应该仅仅把常误当作无用的废物丢掉;我们应该根据适用的条件、定律和变量将其仔细地与感受性的测量分开,并且在每一个领域接连开展研究。我们的观察方法应该切实地推进实验技术,因为它们不仅可以将意外常误的发生一般化,而且展示了一些常误的来源,而这在之前几乎没有得到人们的思考。我的《测量方法》中还有更多有关这方面的内容。

    在测量感受性的方法范围内,影响常误的实验条件中蕴含着关于其区分力的证据。

    对于想要亲自采用我所描述的实验方法来开展研究的人来说,前面的评论远远没有告诉他们需要了解以及观察些什么。因为我有责任对《测量方法》进行更详尽的解释,我将重点介绍后两种方法的本质性特点。我会在此做个简要的概述,之后将更彻底地讨论这个问题。在这个过程中,关于正误法我会以重量提举实验为基础,而关于平均差误法我会以视觉和触觉距离判断实验为基础,因为只有这些才是我可以自由支配的实验领域。接下来的通篇内容中,我使用的术语会根据所涉及的方法而变化。

    正误法在重量提举实验中的应用

    以下说明的实验(始于1855年)构成了正误法的基础,它一开始是为了更仔细地验证韦伯定律这一简单目的而施行的。出于完善方法本身的兴趣人们进一步进行了相关实验,我曾经很希望对不同条件下方法的精确性进行调查,并提升实验和技术,这在当时是无法实现的,后来当这些调查成为可能时,相关研究规模就逐渐扩大了。有几年的时间里,我把做实验当作一种每天例行的劳动,一天进行一小时直至全部结束。做实验需要系统地进行很长的一段时间,这是为了对各种特定的关系进行调查。用这种方法收集的材料在这卷书里不可能详尽完整地列举。人们为了确定不同时间和变化条件下的重要差异,进行了大量的实验和不断重复的实验系列,这在后面的几个章节里还会提及并给出证明。这项工作同样彻底影响了方法使用的实践过程。

    我们的方法依赖于确定正确判断次数与错误判断次数相对于总判断次数的比率,一般我倾向于使用后面这种比率[8]。我假定把正确判断的次数称为r,错误判断的次数称为f,总判断数为n,我们主要关注的比率就是r/n。然而,如果一套特定观察的结果被分成几个子群并且分别加以计算,r和n则分别指每一个子群的正确判断数和总判断数,而v则代表子群的数量,因此vn就变成一整套特定观察的总判断数了。当整个实验系列涉及几套这样必须互相比较的观察时(通常情况都是如此),那么vn就必须再乘以套数以得到整个系列的总数。

    注意每个不确定判断应该被分成两半,一半归入正确判断,另一半归入错误判断。为了避免这样一来存在着很多半数,我把每项正确判断记为两次正确,每次错误判断记为两次错误,每次不确定判断记为一次正确一次错误,因为计算r/n只需要计数数据。

    P指代标准重量,也就是用以比较的装载在容器里的重量,标准P中是没有D的,D代表一个实验试次中使用的重量增量(附加重量)。我们给h指定一个值,这个值与差别感受性直接成正比,因此与能够与给出相同r/n的D成反比例关系,简言之也就是我们所关心的差别感受性的测量值。

    实现这种方法有两种程序方式。根据第一种方式,我们要在反复提起放下载重容器之后决定哪个重量较重或较轻。根据第二种方式,每个容器只提起一次来加以比较,在这之后就立即进行明确的判断,不确定的情况则一半计正确一半计错误。

    一开始我总是使用第一种方式,后来我舍弃了用那种方法所做的全部实验结果,而开始只用第二种方式了,因为我确信第二种方式有更多的优势。不仅是因为这种方式与第一种方式相比能够导致更大的一致性,而且它能为消除和确定准确的时间和空间影响提供基础,因为这种影响会产生常误。正如我们将要看到的,只有用第二种方式,这些影响才能合理地相互牵制。

    当然用第二种方式比第一种方式更容易犯关于差异方向的错误。即使D恒定不变且总判断次数一直保持一致,不明确判断和错误判断的次数也会相对更大。然而基于在任何条件下都会产生误差的事实,因此这种方式没有看起来那么不准确。任何比率r/n的降低均可以通过使用更大的D来补偿,而这个比率太大也不会对测量起到什么好的作用。另一方面,第二种方式在同一时间内能够产生更多的结果,它也可以使每一组配对重量的结果与另一组完全相同或具有可比性。

    如果使用第一种方式,一定不能让被试知道较重重量的位置,为了排除先入观念判断的影响,因此在决定其位置时需要助手的协助。在第二种方式中,根据下面给出的描述,这种预防措施就不必要也不适用了。在对整个情况进行更详细的说明后,这些道理就会变得更显而易见了。

    根据给出的规则,容器应该总是被一个接一个地提起。因此,两次配对的提举才能构成第二种方式的判断基础,先提起一个,再提起另一个;因此它是由两次单独的重量提举组成。然而,因为正如所指出的,每次判断都被计了两次,另外需注意总的判断次数应对单次的提举次数进行计数,而不是成对的提举次数。

    当我用同一只手提起两个容器时,我称其为单手操作;当我用一只手提起一个容器而用另一只手提起另一个容器时,我称之为双手操作。即使是单手操作我也是用双手加以实施的,因为右手和左手是交替使用的。在每一个长时的实验系列中都会发现右手多多少少————尽管不是很明显————比左手更敏感。然而我们发现单手操作与双手操作相比,其敏感性并不存在显著差异。容器受时间和空间关系的恒定影响在单手、双手、左手和右手操作之间进行了比较,发现四种操作差异显著。然而在此我尚不想就这个问题详细展开说明。

    承载标准重量P的容器(与置于其中的物体一起)的设置需要特别的考虑。在我浪费了大量的时间用不完善的仪器进行实验后,最终我才发现了一套令人满意的装置,下面简要描述一下,容器有一个可以转动的圆形手柄,容器内的一系列用于固定重量的装置与容器构成了一个连续的实体。

    我想举一个例子可能大家都会比较感兴趣————确实也只有一个例子————关于必须面对的琐碎的问题,这些问题都可能成为这类实验中耽误时间的原因,我先描述几个不完美的安排。

    开始我用简单的中空木质圆筒作为容器,我用手从上部抓住它。如果重量很重,我的手就需要抓紧,否则容器会从手中滑落,然而如果重量很轻,手就会抓得松一些。因此就无法保证抓握力度的一致。后来,我在容器上装上了铜手柄,它可以绕着销钉在每个容器底部直径两端自由旋转,因此当提起容器的时候它们会由于重力而自动转到一个位置。但是这种装置很快就磨松了。之后,我把手柄铆接得更灵活一些,但为了节省重量我用薄的黄铜做手柄,这导致当我开始使用更重的重量时手柄会弯曲,因此破坏了实验条件间的可比性。于是我用更坚固的材料代替黄铜片,并抛弃了以前的所有实验结果,之后用新装置做了近一年严谨且艰苦的实验。虽然最后我没有把这些实验结果都抛弃,但至少它们需要重复和检验,因为从一定程度上我了解到所有先前的实验观察现在看来都是多余的————或者可能充当新系列实验结果的附加检查值。在随后的结果中它们都被彻底删去了。在下面的内容中可以发现原因。最初使用的压载物,现在已经被抛弃了,只是还在用于校正重量,它的体积大小是与重量成比例地变化的。因为容器必须要足够大以容纳最大的重量负荷,当提起容器的时候,较小的或者甚至一些较大的重物都会移动。我假想即使不考虑这个事实,当手抓起手柄的时候,容器重量的压力也会落到手的同一点上,因此容器中重量物体的可能移动并不会产生不利的情况。由于需要挨个研究和检验的情况很多,它们均有可能影响实验的进程,我就忘了对上述这个因素进行专门的研究。这个疏忽得到了报应。当我最终有意将重量固定在容器的中间或两边并试图加以比较,从而想要确保并将我的研究引到这一方向上时,我发现两种情况下的结果有很大的差异,不是由于重量的不同,而是由于压力分布的差异。当重量处于中心时,一个容器似乎是最重的,当需要对位置的极端情况作比较时,这种差异是绝不能忽略的。当然在我的实验里发生移动的可能性很小,而且通过大量的实验可能互相抵消。根据主要的结果子群间各自相同,以及后来使用改进装置后得到非常一致结果的事实,这种推测可以得到证实。尽管如此我对自己之前的结果还是不满意,结果的准确性和单独测定的可靠性(即使不是整体的数据)都具有风险,我宁愿费劲再用新装置重新测定,而不愿让事情保持原状。

    后面我所提到的所有实验都是根据第二种方式进行的————几乎所有的实验都采用了这种方式,我称其为一般环境或条件。这里省略了第二重要的内容,我留在《测量方法》一书中说明。只有在偏差可以通过研究获得的情况下,才能测得偏离一般条件的偏差。

    最后对容器内部的设置仅仅包括了一个具有四个垂直铜柱组成的框架,这些铜柱在底部由水平的横杆连接起来。容器所载重量物(铅或锌块)的边角都是直角并且大小与框架正好相吻合。这些重量物只是厚度不同,这样它们就可以牢固地卡在框架中,而不会在提举的过程中移动了。标准重量P包括容器、重量物和盖子,盖子的中间焊有一个小空盒。两个标准容器经过仔细处理,可认为是完全相同的。附加的重量D被放在容器盖子上方的盒子中。这样附加重量就会固定在标准重量的中间位置。容器的手柄由一个直径1巴黎英寸[9]的木制圆柱体构成,手柄可以绕着轴心旋转。提起容器的时候要用整只手抓住手柄。

    根据所使用盖子的轻重,每一容器包括盖子重有300或400克两种条件。300克是最小的标准重量P,也就是当容器的盖子最轻而且没有附加重量时的情况。我所使用的最大标准重量是3000克;我的装置可能不能长时间承受更重的重量。当实验目的并非检验使用不同标准重量的结果时,我通常以1000克作为标准重量。

    最常用的附加重量为0.04P和0.08P。

    尽管两个容器在构造上完全一致,但在每个系列实验中为了抵消可能忽视的差异影响,D分别加在两个容器上的次数也要是一样的。

    我用一块装在实验桌边的横板对提起重量达到的高度加以限制,具体高度为2巴黎英寸9巴黎行。

    提起容器的时候要摆脱衬衫袖子的束缚。

    提举实验是这样进行的,例如如果在第一次比较中先提起的是左边的容器,下一次就要先提起右边的容器,如此交叉往复。单独的一套实验包括32组连续交替的提举配对或是64次独立的提举,其中D一直是在同一个容器中的。在每套实验做到一半时(也就是32次单独的提举),这个容器的位置从右边换到左边。不同的时间和附加重量D的位置形成了四种不同的组合,构成了所谓的四种主要条件的基础,这在下面会具体讨论。在一套实验中,每一种方法都对应16次单独的提举或判断。每天通常连续进行8到12套这样的实验,每个实验包含了64次的提举,其中会有适当的实验条件(P、D等)变化。对于较长的实验系列而言,有可能持续将近一个月的时间。

    提起一个容器的时间为一秒钟,由一个节拍器控制,放下容器用时一秒钟,提起与放下容器之间的时间间隔也为一秒。因此,一次用于进行比较的配对重量提举需要用时整整五秒钟。同样的时间————五秒钟————也是两个实验试次之间的间隔。这个时间用来记录结果。在单手操作中总是采用空闲的那只手进行记录,在双手操作中,则以隔天交替一次的方式确定记录用手。

    经过练习,实验者可以跟着节拍器的节奏机械地完成这些操作。正如我的数据本身所显示的,虽然注意指向能够很快地变得一致而机械,但注意本身在每天实验过程的最后阶段似乎没有显著地减弱。对于附加重量D在哪一边的判断,随着时间和空间位置的恒定影响以及随机的不规则影响而发生了不规则的改变:右边更重、左边更重和不确定。可以说这些影响以客观的方式出现,得来全不费工夫,而无须进行选择和思考,均无疑是第一种方式中出现的情况。

    为了避免混淆,并且更方便地使分别包含在四种主要条件下的正确判断次数增加,我们应该对记录进行合理的安排,安排的具体方法在《测量方法》中有叙述。

    我们暂时结束关于实验外部条件的讨论,现在我要转到有关方法的一般性原理了。

    方法的一般性任务是为每一对比较来找到参数r/n的比值————或者如果我们把整体分为v个部分就要得到v个r/n的值————并从这些值里,获得差别感受性的测量结果。我们必须在重量差别感受性的每种研究条件下均进行比较。相关的次要任务还包括明确恒定影响的方向和大小,它是作为实验程序的副产品存在的。

    现在看来似乎从一开始就存在着一个根本性的困难。

    我们知道,在其他条件相同的情况下,r/n的比率随着重量差别感受性的增加而增大。然而我们还知道,r/n加倍不意味着感受性的加倍,但根据我们先前对感受性测量的概念,附加重量D减半而r/n保持不变,对应的是两倍的感受性。根据这些一般的情况,我们现在可以得到以下的观察结果。

    无论你想让感受性低至何种程度,我们总是能够找到一个相对于P来说足够大的增量D,使得几乎全部或全部的判断都会是正确的。即使是感受性最大程度的增加也不会带来r/n的增加,这一点大家一定可以理解。那么在这些条件下,我们就不能以此作为感受性的一般恰当标准,因为即使感受性急剧变化,r/n的比率也会保持恒定或几乎恒定。另一方面,假设感受性大大地提高了,那么一个极小的附加重量就足够使r/n接近n/n,我们也会相应地判断出感受性的增量。因此我们不得不回到之前对测量概念的定义,它是事物所固有的本质。但我们应该如何据此来重新改进我们的方法呢?

    例如,假设我想要比较右手和左手对重量的差别感受性。我会多次提起同样的标准重量P和同样的附加重量D,左手(L)和右手(R)交替进行。然后我会针对左右手获得不同的比率r/n,这使我可以判断两只手的感受性孰高孰低,但是我无法得到它们二者感受性测量的比较结果。现在的问题是,需要获得能够导致左右手产生相同r/n比率的增量D的不同大小。

    如果我只想要研究不同P值下单手的感受性,或者双手的平均感受性,也会出现类似的问题。正如从经验中可知,较轻的P相对于较重的P而言,增加相同的重量D会导致更大的r/n,但是问题的重点是在不同的P值下,找到使r/n恒定的不同D值,以使得可以用D的倒数表示不同P值的感受性测量结果。

    从这点看来,迄今所用的正误法确实只适用于给出一个多了还是少了的指示,而不是具体可比的感受性测量值。尽管如此,还是可以发展这种方法来获得测量结果。

    目前最直截了当的方法是使用试误的程序。我们可以在测验的条件下改变附加重量直到得到相同的比率r/n。然而由于需要非常多个试次,甚至才能为同一个D找到准确的数值,这个过程对于每一个被研究的D值都需要投入大量的观察,因此不仅会非常枯燥,而且即使经过这么多枯燥的试次后也不一定会得到准确的结果。

    我们当然可以在紧邻的两个数值中插入数值(即插值法)。在很长的一段时间中我都是用这种方法的。然而即使这种方法也只能部分地克服不方便和不精确的问题。幸运的是这些缺点可以简单而彻底地被克服。

    由每一个特定D得到的r/n值,可以用于推测需要什么样的D来得出其他的r/n,只要P和其他条件是恒定的,而且r/n是根据足够量的n个试次而获得的。使用的公式原则上是准确的,在实验测量中是成立的。虽然公式基于数学分析,但它也很容易付诸实践。因此可以用来计算我们想要得到的恒定的r/n。事实上,基于任何一个足量的n个试次[10]获得的比率r/n,我们都能够不用计算而在表格中直接查到相关差别感受性的测量值。这种测量与我们前面的定义相符,我会马上说明怎样使用,不过首先要对这个公式的推导过程进行简要说明。

    在我改进方法的过程中,对概率论的兴趣一次又一次地使我得以向前推进,在其中我想到了以下几点:(1)根据我们的程序,差别感受性的测量参数可以通常由标为h的... -->>
本章未完,点击下一页继续阅读
上一章目录下一页

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”