关灯
护眼
字体:

第十一章 对各种感觉领域阈限大小与关系的详述

首页书架加入书签返回目录

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

    想要绝对肯定且有效地给出任何感觉领域内有关绝对阈限和差别阈限的定量大小,这几乎是不可能的事情。阈限值更多地依赖实验过程和过程中的机体状态。而这两种元素都非常易变。此外要精确确定感受或差异感受起始的点是有难度的。同时我曾提到过,总的说来,关于感受性测量的方法仍是有效的。有两种很有趣且必不可少的测定,一种是对通常情况下平均值的测定(即使只是粗略的测定),另一种则是对极端值的测定。它们与产生环境的函数关系本身,就可以作为一个主题进行调查研究。

    其他条件一致时,阈限越低,感受性越高。众所周知,人类机体的构造是如此严密以至于在这方面存在着一定的限制,这是我们不能忽略的。另一方面,有许多条件诸如异常体质、器官畸形或各种各样的随机因素影响都会提高阈限。所有实践中获得的阈限值都被视为上限,低于此值的区间中存在理想阈限,可以说,理想阈限是在最佳环境中获得的。因为最低的阈限值使我们离真正的极限最近,所以它们是最令人关注的,前提为它们是基于有效的观察得到的。

    以下叙述的确并非对所有已知的不同领域中有关阈限值报告的完整总结。然而,我提到它们是作为未来工作的开端。这些研究大部分只考虑了差别阈限,因为到目前为止,关于绝对阈限我们知之甚少。

    集中阈限

    光和颜色

    正如前文所提到的,我们无法用实验确定亮度的绝对阈限。目前所知的关于差别阈限的研究在第九章已提到过,以下只是一个概括。

    博格在投影实验中发现差别阈限等于光强的1/64。这里还有是否存在运动的问题。阿拉戈在没有运动的前提下发现不同个体的比例值在1/39到1/71之间变化,而有运动时则在1/58到1/131之间变化。福尔克曼在阴影实验中针对不同观察者的结果发现,在允许运动的条件下,比例值为1/100。在圆盘旋转实验中,马森针对大量不同的观察者进行了总结,结果发现比例在1/50到1/120之间甚至更高。

    根据马森的观点,该值不会随着不同颜色而变化,但却会因人而异。

    在这些测定实验中,我们是直接观察由给定范围的光照亮的表面及投影。但很明显的是,差别阈限也取决于可见区域的范围,至少要达到某个特定的范围,同时还取决于视网膜外围或中心区域是否参与视觉反应。

    一般来说,位于白色背景上一个黑色物体的表面,或者黑色背景上白色的表面,当视角越小以及激活的视网膜外围区域越大的话,这种背景下黑白的差异感会消失得更容易(也就是说不能再将它与背景区分开来)。这时和点相同宽度的线能被识别,但是点却不能。另外,颜色的不同也会造成差异。

    就大小而言,光照一定是在相同的观测距离处,小尺寸物体比大尺寸物体更容易消失于背景中这一事实的原因。目前为止人们还没有将足够的注意力放在这一点上。在这方面,值得注意的是,白色背景上黑线或黑点会随着它黑度的减小而变得更宽,黑色背景上白线或白点也会随着它明度的减小而变得更宽。这些事实和理论已由福尔克曼陈述并精确发展。[1]

    当然,散射并由此被光照而稀释的光,或者是叠加了部分光的黑色,均较难分别从黑色或白色背景上区分出来。这种条件必然对点的影响程度要大于对线的影响程度。那么毫无疑问的是,恒星的差别阈限一定大大超过博格的数值,这是巴比涅基于他的计算基础而得来的。这就意味着,即使强度差异远大于1/64,恒星也不会从背景天空中被区分出来,应用人造星的实验直接测定阈值对许多天文学问题来说是很重要的。[2]

    上述讨论足以证明光的集中和广延阈限只能通过彼此之间的关系来确定。因此我将先搁置这个问题,待到讨论广度阈限时再回过头来讨论,因为该部分内容中光照的影响将再次被提及。

    据说,颜色在被识别成颜色之前,也必须要以一块最小面积的形式呈现在眼前。当然直接观察是这种情况,更重要的是在间接观察情况下仍是这样。无疑背景的光照和感应(布吕克使用的概念)在小色块的消失中起了作用。但是,这样的消失还没有被彻底地解释清楚。目前对于这一事实的最严密观察是由奥贝特进行的。[3]然而,在得到更多确切结论之前,我们必须将外围视野对彩色背景下黑白格子的识别,加到对黑白背景下彩色格子物体的识别行为观察研究中。

    声音强度与音调

    沙夫豪特[4]已经用适当的测量程序进行了听觉极限的实验。该声音是由小球[5]从一个已知高度落到由普通平板玻璃制成的矩形板上发出的,这个矩形板在节点处通过螺丝固定。耳朵是严格定位在作为声源的玻璃处。从板的中间即小球撞击点到用以接收声音的耳朵中部的水平距离是55毫米,垂直距离是74毫米,而直线距离是91毫米。作者写道:“这个实验告诉我这是耳朵确定能听到最小声音的最佳距离。”用作者的话来说,这些实验的基本结果(并没有详细描述)如下:

    “在耳朵可以感知的音量测定实验中,我发现,一般来说质量为1毫克的软木球从1毫米的高度落下的声音,在一片寂静中即深夜里还是听得到的。在半夜12点钟进行这样的实验30次,当完全无风的安静条件下,我确信有25次听到了上述方法产生的声音。在一些受过专业音乐训练的年轻人中也存在类似的情形。我发现老年人中只有少部分能听到这声音,除非他们也经过专业训练;然而,有些老人在练习后也能肯定地知觉到上述声音。

    “因此我可以毫不犹豫地说,质量为1毫克、从1毫米高度落下的软木球所产生的声音强度,可以作为健康人耳刚好可感知的声音强度平均极限的声学能量标志,这可能是受到我们文化的影响。”[6]

    当然距离耳朵更远、声音强度的影响力更大的研究也是可取的,因为很显然上述实验中的小范围干扰和测量误差被最小化了。有一点要考虑到的是,根据上述实验过程,听力是在只有一只耳朵参与的情况下发生的,而一般听力过程中使用了两只耳朵。

    根据我所引用的伦茨和沃尔夫的实验,以及福尔克曼的实验,似乎可以看到人们对声音强度的差别感受性要比对光强度的差别感受性小得多。我们可以很确定地区别出比例约为3:4的两种声音强度,但随着比例越来越小判断也变得不那么可靠。

    从音高的角度而言,一般人们都认为存在听力的下限。通常是每秒有30[克拉德尼(Chladni)测定]或32[比奥特(Biot)测定]次振动。同时,根据萨瓦尔特(Savart)最近一些采用汽笛进行的实验[7],每秒振动14到16次的音调应该还是能听得到的。他倾向于认为,如果有必要,只要依赖于延长单个印象的持久时间,即使更低的音调也能听得到,这样就不会有真正的下限。然而,德斯普雷茨(Despretz)[8]仔细重复了萨瓦尔特的实验后,直截了当地否认了他的断言,并得出结论:“尚未有证据证明,人类的耳朵能够感知并确定低于32(16个往复振动)次简单振动的音调。”萨瓦尔特可能是被他的装置所产生的大强度声音所迷惑,它确实很强,但它既不是乐音的也没有固定音高,因此会具有更多的噪音特征。

    如果德斯普雷茨确实是对的,即汽笛的每一单脉冲分别形成的噪音,由于脉冲的时程原因容易被当作是连续的声音,这就会让人对音调产生错误的印象。[9]

    无论可能是哪种情形,就萨瓦尔特和德斯普雷茨的不同操作而言,假定人类的耳朵对音调不存在下限是很荒谬的一件事情。一个小时持续振动所产生的音调显然不会仅仅被人类知觉为一个音————或许能被某些不同构造的生物所识别,但肯定不是人类。

    音调的可听性似乎不只有下限,也存在着上限。

    1700年沙维尔(Sauveur)在《学院本年要闻录》(Mém.de l'Acad.Ann.)中指出每秒振动124000次为上限。沃拉斯顿(Wollaston)认为蝙蝠和蟋蟀的声音代表了可听音调的上限。昆虫器官能够发出的最高音调的振动频率是最低音调的600到700倍,这就使得简单振动的上限为19000到22000次,比奥特假定的上限只有8192,克拉德尼认为是12000,奥利维耶(Olivier)[10]认为是16000,扬(Young)设定的是18000到20000。

    萨瓦尔特同时还发现,如果某人能产生足够响度的高音,那就和他用一块薄的材料敲击齿轮的齿发出的声音一样,人们将会相应地听到由48000次简单振动(24000次敲击)所发出的声音。同样地,德斯普雷茨从他用小音叉做的实验得到结论,即耳朵仍可以感知、确定并分类高至73000次振动的音高,“但是,对极高音调的听觉不会足够快地发生,因为人们把它归在音阶里”。

    或许人们会提出这个问题,即究竟高音调可听性的极限是否已经达到,或者是否存在着人所不能听到的更大振幅或更高音调。另一方面,很有可能要么是神经本身无法感知太高的音调,要么是耳鼓及其附件可能无法接收它们。

    前面的讨论是关于音调的绝对可听性。我们对音高区别的感受性似乎远远大于对响度区别的感受性。

    一个叫西贝克(Seebeck)[11]的人能够区别出两个音调几乎完全一致的音叉,其中一个是每秒振动1209次,另一个是每秒振动1210次(当两个音叉同时被敲响时测定的节拍数),他可以追踪出其中一个音叉的音调低于另一个,可以说一个音叉的振动轨迹“比另一个”低。[12]“有人(西贝克声称)刚好能够区分这种几乎完全一致的音调间隔。我们无需提醒,大家都会知道这样的识别力需要经过训练的人耳才可以做得到;虽然我有理由相信自己在这方面的听力是相当敏锐的,但我也不能质疑钢琴调音师或小提琴家等人的耳朵可以表现得更好。我向两位优秀的小提琴家呈现这两个音叉,他们在判断哪个音调更高时丝毫没有迟疑。在这种情况下两种音调听起来很像,这有可能是辨别音高的一个有利条件;或许这样的准确性并不是在所有水平的音高上都存在的。”

    关于人耳对音高差异感受性的早期数据,无论如何也没有测得过这么高的结果。威廉·韦伯[13]顺便注明,在适宜条件下人耳就可以直接(即不用通过节拍的协助手段)且准确无误地判断出的音调,不会超过200次振动/秒的水平。

    德勒泽纳[14]不仅和其他人到目前为止所做的一样,从两个相似音调的共振中确定了最小可觉差,而且还设计了一些其他音程,如八度音、五度音、大三度和大六度。人们可能会注意到,这里的任务是确定两个音符之间的差异或比例,而不是两个音调之间的最小可觉差。在这里,先后发出的两个音之间的每个纯音程[15]都代表了差异,而每个非纯音程都代表了稍有变化的差异。然而在这个例子中,由一个共振纯度确定的最小可觉差,可被视为一般情况下的一个特例;即由两个差异为零的音调中计算而得的偏差。

    实验是这样进行的。将以每秒120个周期振动的弦,在相隔1147毫米的两座小桥之间以单弦的形式拉伸。其中的一座桥是活动的,这样弦在其长度上的某一点被分为两部分,弦两端的声音就会产生一个音程。这座活动桥是很灵活的。它被放在弦的下面且没有增加弦的张力,弦紧贴着这座桥尖锐的边缘。德勒泽纳首先确保了音程的纯度。然后将活动桥移向右边或左边一点点,最多不超过几毫米。现在让观察者判断什么时候音程中的变化变得明显。活动桥是在观察者视野之外的,移动桥的位置直到基本找到一个纯音程,并确定判断中产生了多少错误。

    虽然这些实验看起来是非常认真仔细地实施的,但不幸的是,由于缺乏准确的方法,人们对所得数据间的可比性不能太过相信。因为这些测定对音乐实践和乐感理论都是非常重要的,所以重复这些实验是非常必要的。注意要采用正误法和平均差误法,严格控制所有条件的可比性,选取听力好与不好的各类观察者,之前作者用来测量最小可觉差或极限的方法尚不足以保证得到一个精确的结果。

    德勒泽纳的结果如下。

    取一根长1147毫米、以每秒120个周期的频率振动的弦,然后缓慢移动活动桥使得两部分弦的共振被打破,结果发现,当活动桥移到距中点只有1毫米的时候,就需要极好的听力才能辨别出两端相继出现声音的差异。弦一端的长度为(1147/2)+1毫米,另一端为(1147/2)-1毫米,因此二者的长度以及相应频率的比值为1149:1145。比例为1151:1143时的差异,就能够被没有经过特殊训练的人耳所听到了。[他写道:]

    如果我们把活动桥向右或左移动2毫米,几乎未经训练的人耳就可以感知到这种差异,这是我在几个被试的实验中确定得到的。如果活动桥只移位了1毫米,就需要一只相当灵敏的人耳才能立即意识到差异。为了让被试不因周围物体而分心,或者是不让被试了解活动桥是否真的产生了移位,参与这一测试的被试要闭上眼睛,以此来避免被试根据所看到的方向改变产生预知。所以极其灵敏的人耳是对于这样细微的差异非常敏感的。假定这是人耳感受性的极限,那我们来计算以下这两种有着微小差别的感觉之间的关系。我们将得到:

    因此组织结构最好的耳朵能感受到1149次振动中4次振动的差异。[16]

    为了将这种音程与作为普遍单位的81/80小[音程]相比较,我们可以说人耳对同音上增加了四分之一的小音程这样的情况,是几乎判断不出来的。

    我们已经看到,那些从未有过声音比较经验的人,能够感知2毫米位移的差异。因此我们可以根据这些声音获得被比较的音程:

    因此这些人是能感受到1151次振动中8次的差异,或者说是略高于半个小音程的音程。

    如果把与其他音程相对应的结果也列出来,我们将发现,根据德勒泽纳的说法,当频率比值如下所示,且音调是被相继听到时,那么非常敏感的耳朵刚好够区别如下音程的偏差。

    ①在完全没有经过音调比较训练的被试身上,我们计算出的比值是1151/1143=(81/80)0.561。

    ②该数据依赖于活动桥是向左还是向右移动。

    或者

    大家可以看到,人们对五度音偏差的知觉相对来说是最独特的。

    重量

    卡姆勒与一些合作者[奥贝特、福斯特、特伦克(Trenkle)]一起进行了一系列实验,是关于皮肤不同位置所能感觉到的最小绝对重量。他的结果发表在他1858年从布雷斯劳大学(波兰)毕业的论文《皮肤各个区域的最小感受性》。他的实验材料包括重量较轻的木髓、软木或纸板,每个大小约为9平方毫米,但是重量各不相同并且可以根据需要进一步加重。重量降得非常慢,并尽可能在测试区域内是从上往下地垂直降低的。将一个细拱形铜丝或猪鬃放在两个斜对角的角落里,重量以马镫的形状呈现,在其上端系着一根棉线来固定重量。

    详细报告这里的所有结果将会很繁琐,因为实验中测量了不同观察者的整个身体表面。我将只提及部分结果:不同区域感受性大小的顺序与韦伯用圆规两脚进行实验的结果毫无相同之处。根据这四名观察者的数据所得的大小顺序结果很接近,但也不完全相同。前额、太阳穴、眼皮和前臂背侧是最敏感的部位,在这些地方0.002克的重量在大部分情况下都能被感觉到。指头则一般不太敏感。

    总之,能感受到最轻重量的最敏感区域的详细情况如下所示:

    奥贝特在前额、太阳穴、左右前臂及关节(包括掌侧和背侧)以及拇指掌侧(即手掌的一侧)外沿和双侧手背能感觉到0.002克的重量。卡姆勒是在前额、太阳穴、右前臂背侧以及双侧手背感觉到这个重量。福斯特是在前额、太阳穴、上下眼皮和鼻子位置。特伦克则是在鼻子和嘴唇上。

    奥贝特在右手拇指掌侧外沿能够感觉到0.003克的重量。卡姆勒则是在两只前臂掌侧、左前臂背侧表面以及左手拇指掌侧外沿表面能够感受到这个重量。

    卡姆勒在右手拇指掌侧外沿表面感觉到0.004克。

    奥贝特在鼻子、嘴唇、下巴、上下眼皮、胃部中点等部位能感觉到0.005克的重量。卡姆勒则是在鼻子、嘴唇、下巴、上下眼皮、胃部中点等部位。福斯特是在嘴唇、胃部等部位。特伦克是在前额、嘴唇、上下眼皮、胃部、前臂等部位。

    一克是作为指尖和右踵(据奥贝特的研究)能刚好感觉到的最大重量(也就是最小可觉重量)。

    我们已经引用了韦伯得到的结果,这个结果是关于重量差异的,附带地测试了韦伯定律。然而,他的处理[17]中有更多关于重量最小可觉差实验的细节,包括仅根据压力或压力与肌肉觉相结合的流程,也有根据压力作用的部位进行的讨论。

    在以下实验中,用来比较的两个重量放在两只手上,它们的最小可觉差给出的方法测定。当手一直放在桌子上(a列)时,对应的是在纯压力感觉之间做对比,当两只手都提起时(b列),对应测量的是压力和肌肉觉的结合。但是开始时每只手上总是有32盎司的初始重量,当一只手上的重量按照下列数量减少时,差异变得明显:

    在接下来的实验里[18]观察者用同一只手交替提起两个重量。重量挂在手上,由两块折叠的布片包裹,布片两端连接起来。“总共十个人参加了实验,一半为男性,他们根据所描述的方法,比较了用布片举起78和80盎司的重量,其中只有两个人不能区分哪个重哪个轻。在每人三个试次判断哪个更重的过程中,七个人每次都判断正确。其中有些人做了四到七个试次,每次都做出了正确的判断。十个观察者中有一人在八个试次中答对了七次答错一次。”

    韦伯认为,这个实验程序里只涉及了肌肉感觉。我并不完全同意,这有提到过。

    在接下来的实验里[19]使用了六堆重量恒定的泰勒币[20],每堆硬币的重量略小于2盎司(总重量接近12盎司),将它们分别放在身体双侧的对应部位(下表中最后两个部位是采取中线作为测试点的)。然后在一侧逐个拿走泰勒币,直到被试感觉到两边的重量差异。下表列出了在差异变得明显之前需要移走的硬币数。(没有说明实验被试。)

    这些实验也与第十二章引用的等值法所进行的实验有关。

    温度

    韦伯[21]已经发表了一些关于最小可觉温差大小的内容。根据他的研究,让被试把整只手交替放入水温不等的两个容器里并集中注意,运用这种方法人们可以区分相距只有1/5°到1/6°R的温度差异。但是,他并没有准确测定觉察到差异时的温度。我发现在中等的温度范围内,即便更小的差异也能被觉察到,而且他们会根据受到温度的影响而产生很大的变化。可以把这些内容与第九章对比一下。

    韦伯所做的关于冷热痛阈的实验和讨论可以在相同的报告里找到。

    广度阈限

    视觉

    基本上,我们视网膜所能觉察到的距离均受到视野的限制,有人可能会问一般需要多少量的感觉环才能使视野进入可觉察的范围。我们应该把这个问题与下面这个问题小心地区分开来,即当采用不同方式对当前视野进行刺激时,为了将其中一部分与其他视野区分开来,所需要的刺激比例量是多少。到目前为止还不可能解决第一个问题。因此我也将绕过这一问题,尽管这确实是广度阈限研究中的基本问题,但只能在后面一些有关理论性内容的章节中再回到这一问题,现在我们还是要回到有关广度阈限的研究上来。

    眼睛能感知到的最小广度、最小距离以及广度与距离的最小差异各是多少?

    找到最小可辨别距离的任务与测定最小可能值的任务是一致的,因为人们终究会认为两个有限点间通径的最小可觉长度,应该与两点间的最小可觉距离是一样的,反之亦然,也可以像最小可觉长度那样来考虑最小可觉距离。然而,这些实验可以分为以下几种,即在大且均匀的背景上观察一个点、一条线或者一小块表面,以此来测定双眼间距(以及由此得到的视角)为多少时,这么小的客体仍然可以看到(或消失),以及在给定背景上观察两个或更多的点、线或者小块表面之间距离的情况。这里的实验任务是研究分离的视角为多少时,它们将相互融合在一起。出于我们的实验目的,将前者称为关于最小可觉大小的实验,后者是关于最小可觉距离的实验。两种实验条件不同,这直接关系到实验的结果,因此如果把两种条件套用在照明的例子中,前者只涉及两个边缘,而后者涉及四个边缘。

    眼睛能识别出的任何大小必须是出现在一个给定的背景上,而它能否被识别出在一定程度上取决于其与背景的对比。因此广延视觉阈限问题与强度差别阈限有关,而且这个观点已经讨论过。视觉对象与背景间的差异越大,每单元范围内的大小更容易区分。另一方面(至少达到一定极限),如果对比保持不变,视觉广度越大,物体越容易识别。无论背景是黑色的,需要区别的物体表面是白色的,还是反过来,这一事实都有效。

    为了找到这里面的定律函数关系,特文宁(Twining)[22]做了一些实验。在一块白色背景板上有一些规则的黑色斑点,只有一道光源照射该点,他需要测定当眼睛与背景板间存在不同水平距离的情况下,光源与背板的距离需要调整到多少,能够使斑点与背景融为一体。他通过这些实验得出一个定律,即虽然眼睛与背板的距离呈几何数下降,但相应的光源与背板的距离却呈算数级增长。[23]

    如果将照度J定义为油灯距离背板L平方的倒数,将黑点的视直径D定义为视距A的倒数,那么就可以用来代替L,用1/D来代替A。这一定律现在可以用以下公式表达:等比例的D′/D对应于等差异的。这个定律本身不太可能成立,而且特文宁假设A是D的倒数,由于实验条件下照明的影响,毫无疑问这是无效的假设,这一点我们后面将会讨论。因此,尽管特文宁自己的实验非常符合这一定律,但正如我们看到的,这最有可能只是一种经验的表达,而不是真正的自然法则,它在其他实验条件下的普遍有效性值得怀疑。同时,这些实验并不是没有意义的,它们表明,当观察距离较远的前提下,距离仍按照一定比例增加时,刚刚能够明确识别斑点时的相对照度将会快速地开始或停止增加,而当观察距离较近的前提下,距离以同样比例增加时,照度的相对增长却只是很微小的。作者提供的两个最大观察距离107.29和134.11英寸,比例为4:5,它们对应的油灯距离为29.5和15.5英寸,即照度比例为1:3.62。另一方面,所使用的两个最小观察距离为28.12和35.16英寸,同样比例为4:5,对应的油灯距离分别为131.6和110.5英寸,反映的照度比例为1:1.419。这一结果将保持稳定不变。

    本来特文宁使用的装置是里外都漆成黑色的盒子。这个盒子除了前面以外全是封闭的,前面打了一个方形小孔,一方面是为了能够让光透进盒子里,一方面是便于被试从另一边观察。在同时进行照明和观察时,照明灯和眼睛(分别在孔的两侧)之间的距离要足够远以防两者相互干扰。在盒子内部的后侧上有一些纸片,上面标有等距且按规律排列的黑色小圆点[24],这些黑点接收光的照射并可以被观察者看到。在不同的实验里,眼睛与盒子后侧间的距离是不同的,每次把灯移近或移远,直到黑色斑点与背景相融合或直到它们之间清晰的界限正好不见[25]。灯是被盖住的,除了一个小孔用来供光束透出,眼睛通过固定在框架上的管子(眼管)进行观察,管的孔径为0.16英寸,长3英寸。管和灯在有刻度的木板上可以移动,并在盒子的一个角上汇合。眼管的滑动是以5:4的几何级数变化。在盒子方孔前面放置一块黑屏,其上对应盒子方孔的位置也有一个孔,目的是阻止房间里的杂光进入。

    下面的表格包含了观察结果,单位为英寸。[26]据原文记载,在每个距离上进行了四对观察,但表中在每一距离上只给出了四个数据。因此,每个数据可能是两个观察值的平均值。观察距离大小的顺序是以4:5的几何比例增加的。最后一列“估算值”列出了估算的灯距,这是基于这样的假设而计算出来的,即灯距与标准的16英寸灯距之间的算术级数差异,对应的是两者间的几何级数差异。

    特文宁的实验数据

    小的可见物体的辨别力极大地依赖于辐照效应[27],这一点我们很早就已得知。现在我们将更仔细地验证这一影响。这里我们要考虑的是在照明条件下,由于光学畸变和折射,视网膜对光的物理散射所产生的印象。

    在所有关于最小可识别大小或距离的实验中,人们减小大小或距离————或者把物体移远————在不考虑辐照的情况下,视网膜上的成像就会减小到一个点或一根宽度可忽略不计的线。一般来说,除了福尔克曼关于辐照的新论文[28],最小可辨认影像的直径或者最小可识别距离的计算都没有考虑到辐照。但是,福尔克曼的精细实验非常准确地表明,即使最好最彻底适应了的眼睛,对光的传播产生可觉可测量的印象过程中,一定会受到辐照的影响。如果人们将他在最好的可能观察条件下获得的关于扩散圈大小的数据,与他自己或者其他研究者有关最小可觉物体大小的结果相对比的话,不仅会发现没有考虑辐照时,与最小可觉察影像的直径(或最小可觉察距离)相比,计算出的扩散圈直径相对较大,而且会发现通常它比这一直径大很多。因此,光形成的影像大小比我们想象的要大得多,虽然同时由于色散,它比计算出的最小可知觉大小要小。

    的确,根据福尔克曼的测量(后面将引述),实验中由明亮光线照射的黑色背景上的银线边缘宽度向两边增加,增加范围从最小值0.0012毫米到最大值0.0032毫米[29](以巴黎行为单位的话是从0.000532到0.001418)。由六名可能有着最佳视觉适应性的观察者参加实验。如果线段是黑色的而背景是白色的,那么增加范围则为0.0003到0.00185毫米。然而,根据例如胡克(Hueck)等人的研究,黑色背景上白色条纹开始消失时的视角,也是直线最小可识别宽度极限的标志,达到了2秒的角度值,代表了视网膜上的0.000145毫米。

    正如指出的,辐照的范围依赖于物理条件,并不随着照明强度而增加。因此,较强和较弱的点光源所照射的范围是一样的。但是,弱的点光源能够达到与其背景不能区分的程度,而明亮的点光源将保持可觉的水平。

    一般来说,当点光源强度不足以达到与扩散圈中心的背景相区别的差别阈限程度时,那么它就再也不能被觉察。在白色背景上一个黑点的情况下也发现了类似的现象。周围的光到处扩散并照亮了黑点,这样的话光就会散开来,它的黑度会由于辐照而减弱,和黑色背景上白点的作用形式是完全一样的————与福尔克曼讨论过的情况相同,并且他已经通过实验证明。

    伯格曼(Bergmann)[30]发现,在研究最小可识别大小的实验里所使用的点或线在远处时显得很暗淡,所以任何微小的影子都可以轻易地与它们相混淆。他注意到,当被试每次逐渐地接近由1毫米宽的黑白条纹组成的网格时,从被试首次看到两者混合在一起的距离开始,白色变得更亮,黑色变得更深。这些情况可以很容易根据以下事实解释,即由于光学畸变,在可清楚看见的范围之外,光就会更加分散开来。

    据说关于最小可识别距离的实验可适用于检测空间知觉的灵敏度[31],因为光的强度在其中起重要作用,这一点可以很容易通过上述事实进行解释。实际上,这里辐照的影响只是更加复杂了,而并非消失了。当两个亮点或线相互靠得足够近时,它们的扩散圈重叠了,重叠空间中心亮度的最小值与辐照中心亮度的最大值之间的差异低于阈限值,因此我们无法区分出二者。实验表明,这里的光强度也起到一定的作用。我发现斯坦海尔在关于光照度测量的文章中曾提到过,暗度较低的墨镜在分离非常接近的双星中表现出令人惊讶的作用。然而我必须承认,基于我所掌握的内容,尚无法将这种效应推论为辐照条件的作用,在我看来,在扩散圈的延伸不会随着光强度的增加而增加的前提下,最低和最高强度的比例在强光或弱光范围内应当是保持一致的。如果是这样的话,那么我们感知差异的能力将是不变的。而事实上如果背景强度不断增加,那么更高的光强度条件下的识别力应该占有一定的优势。

    总结前面的讨论可以得到,只要照明所起的作用以及如何消除该作用的问题没有解决,那目前有关视网膜上最小可觉大小和最小可觉察距离的实验,就不能用以获得关于空间知觉的敏锐度和广延感受性程度的结论。总结表明,如果忽视辐照作用,那么根据物体的大小和距离对极小的视网膜成像大小进行推算,以及对它们最终在视网膜细胞上的关系判断将是靠不住的。关于这一点,福尔克曼在他关于光照的论文中总结如下:“到目前为止所有有关刚刚能被觉察到的最小视网膜影像大小的报告都是错误的,这些数据都太大了,因为他们的计算都没有考虑到辐照的作用。”

    这个讨论将会引发物体大小本身在差别阈限测定中所起作用的问题。这全是由于辐照作用吗?在这种情况下我们假设物体大小的增长存在极限。不幸的是我们仍然缺乏用来检测这一问题的关键性实验。我只知道福斯特所进行的一些相关实验[32],但是这些实验并不是针对这一特别问题的。这些实验似乎表明,物体大小对知觉阈限的影响实际上超过了辐照。实验过程如下:“将一个封闭的盒子作为暗室,将被照射的物体放在里面,这个盒子内部是全黑的,是个长接近36英寸、高与宽约为8英寸的平行六面体形状。在盒子一个角末端处有两个供眼睛观察的圆孔,它们中心之间的距离为2又1/2英寸,与它们相邻且处于同一高度的是一个25平方厘米的方形孔,这个非常大的孔是供光源射入的。在盒子内侧用质量很好的白纸蒙上这个孔。在1/2英寸距离处有一根燃烧的油脂蜡烛[33](可以尽可能地均匀燃烧)。这样,方形孔上的白纸就被照亮作为光源,物体摆放在盒内另一侧。光源大小可以根据需要调整光圈(中心有不同大小孔洞的纸板),这些光圈板紧贴在盒子前。”

    作者提出:“要在白色背景上辨别出长5厘米(长边是垂直的)宽1到2厘米的黑色矩形(眼睛距离为12巴黎英寸=32.5厘米),所需的最弱照明是2到5平方毫米范围的光源。如果光源低于该值,那么物体必须相应地变大。”

    人们可以计算得出,在给定的观察距离上,宽度为2厘米的条纹在视网膜上形成的影像相当于0.9毫米。根据前面给出的数据,该值远远超过一只适应良好的眼睛刚好感觉模糊的量。现在如果更大的物体在更弱照明下变得可见,就说明大小的影响不仅仅依赖于辐照。然而,我们仍然需要直接专门针对这一主题,以及追踪大小变化与绝对亮度的函数关系,开展进一步的实验。

    在任何情况下有一点可以确定的是,目前在没有考虑到辐照的前提下,大小和距离阈限的测定都是无效的。但这并不意味着广度阈限就不独立于眼内光产生的辐照了。假定视网膜或皮肤上的某一印象的广度按照任意比例减少,那么只要一个活跃的神经末梢被激活或者超过了其强度阈值,就仍然能够产生相应的感受。但是当印象的广度落到某一特定值以下时,这种印象并不一定就不能被知觉为某一广度水平(即仍可以区分一些点的大小)。换句话说,已被视网膜感知的某段距离,可以在减少任意量后仍被感知为一段距离,我们不能说这种描述满足与之密切相关的准则,因为这样的感受是以对两个边缘间差异的知觉以及一些点的刺激为先决条件的。

    确实,目前的神经生理学一般都接受这样的假设:如果我们将感觉环理解为简单神经纤维的终点(或者是分支情况下的终点),那么人们只能在印象落在不同的感觉环里时才能辨别。然而,一个感觉环,无论它是属于未分支或分支的纤维,都必然有一定的直径,因此并排落在同一个感觉环的印象是不能被区分的。在视觉领域,实验证明在这个问题上,我们似乎真的面临着无法克服的困难,因为公认光点的扩散圈是要大于感觉环的。但是,我们或许可以研究类似于视网膜的广延感觉性器官,其中之一就是皮肤。我们必须要承认扩散也在触觉实验中起作用,因为皮肤上一点的压力或多或少会传递到其相邻部位。但是这一事实却无法解释韦伯的发现,即相距30巴黎行长的两个圆规脚在背部、上臂和大腿处都被当作一个点,观察者无法分辨出这个距离,我们也不能认为皮肤不同区域最小可觉察距离之间的差异也依赖于上述因素。皮肤和视网膜在感觉程度上的相似性已经由韦伯在其他研究中进行了证实,不过我们将怀疑它是否在这里也能通用。

    根据以上内容可以很显然得知,评价和解释我们这一主题需要两方面的知识,一方面是当眼睛的适应力达到极限时所发生的扩散的绝对程度,另一方面是哪些视网膜细胞可以表征感觉环以及它们的尺寸。针对第一点,我将附带提到福尔克曼利用他本人和其他人作为被试发现的结果。就后者而言,我将简要提到,所谓的视锥细胞如今被认为是视网膜上最有可能实现感知感受的细胞。根据科里克(Kölliker)对能产生最清晰视觉的黄斑处视锥细胞的测量,它的直径为2到3个千分之一巴黎行长。伯格曼[34]在测量中央凹外围区域时得到了一些更较小的值。

    直径为0.445毫米的银线固定在最佳观察距离S(以毫米计量)处。结果如下:表中a列是将黑色的线置于明亮如天空这样的背景上时获得的数值,表中b列是将白色的线置于黑色背景上时获得的数值,该背景受到反射光的照射。给出的结果是Z个实验试次的平均值,实验中第一个数字代表条件a中的试次数,第二个数字代表条件b中的试次数,二者都是通过直径为R(以毫米计量)的扩散圈形式进行测量的。

    福尔克曼的照明实验

    *海登海因博士的结果在条件a下出入比较大,因此予以删除。他的大多实验试次都不支持辐照对结果起作用的假设。福尔克曼称之为实验中不同于其他被试的一个例外情况。

    +S值在条件a下等于115,在条件b下等于110。

    数据来源:Berichte.der sächs.soc.,1858, p.129.

    福尔克曼提到他之前请克诺伯劳教授、汉克尔、鲁特、切尔马克(Czermak)和其他人(有时是在他的鼓动下完成的)帮助完成的一些个案观察,以及相应的结果(即扩散存在的证据),此外这里还提到了一些合作完成的实验系列结果。这些结果是通过如下方式获得的。观察者使用的是提到过的测微仪,它包含了平行且直径为0.445毫米的银线,仪器摆在眼睛能够最清晰地看到线的距离。然后他试图通过转动千分尺的旋钮来使得平行线之间的距离等于它们的直径。结果看起来选定的距离总是要大于线的实际直径,因为由于扩散效应这一直径看起来更宽。人们可以通过以下方式来计算出结果:根据眼睛视轴为标准,主射线的交叉点落在角膜关键点后面9毫米,在视网膜前15毫米。基于这些数据,在不考虑由辐照效应带来的色散前提下,只要千分尺中线到眼睛的距离和与它们之间的距离是已知的,人们不仅可以测出千分尺中每条线视网膜成像的直径2r,还可以计算出视网膜上一条线与另一条线的视轴距离ε。当在实验中我们发现两条线的分散影像间距离δ等于一条线的影像直径2ρ时,就可以很容易地通过实验数据得到扩散圈的直径=ε/2-2r,因为ε=δ+2ρ且2ρ=δ=ε/2。根据39个试次的平均数,福尔克曼发现从333毫米的距离观察时,两条线之间距离0.207毫米产生的视觉感受,等于单条宽度为0.445毫米黑线的感受。因此ε/2=2ρ=0.0055毫米;2r=0.00199毫米,然后结果ε/2-2r=0.0035毫米。为了做个检查,福尔克曼另外又做了10个试次,其中他使两条线之间的距离是线的外部直径的两倍。人们可以从前面的实验结果中计算出这一距离应该等于0.328毫米。10个试次给出的平均值结果是0.337毫米,一致性很高,也说明实验过程是令人信服的。

    以下要点同样值得关注:辐照效应在水平和垂直方向是不同的。当福尔克曼在与先前实验(这时线条位置是垂直的)同样的观察距离,参看水平位置的线条时,一个非常独特的影像出现了,所以为了保证从同样333毫米的观察距离产生的感受相同,必须戴上弱凸镜。在亮背景下执行这个实验,10名观察者的扩散圈直径结果平均值为0.0047毫米,而在垂直位置上的数值却是0.0035毫米(不戴眼镜)。

    实验组中有五天的数据考虑到了亮度,采用的是条件a,具体数据细节如下。福尔克曼测得的与线直径感受相同的距离D也在下面一并给出(D的下标代表实验试次数)[35]。

    第一天(无详细资料)  D9=0.1897

    第二天(阴天)  D10=0.2271

    第三天(明亮天空)  D10=0.2153

    第四天(非常明亮的天空)  D10=0.2074

    海登海因的实验运用了条件b,产生了如下结果:

    第一天(无详细资料)  D20=0.111

    第二天(非常明亮)  D20=0.153

    没有发现照明程度在其中存在着明显的影响。

    针对最小可觉大小值的测量

    虽然根据前面的讨论,前人关于最小可觉大小和距离的测定似乎无法帮助我们得到任何有效的结论,但是它们在眼睛效率(即眼睛能够确定结果的准确度)的最低限度和实践意义两方面都很重要。因此做个总结是有必要的。

    不幸的是总结显示不同研究者的结果之间几乎没有一致性。而且,如果观察条件没有指定精确的话,这些不稳定的结果值可能会完全消失,因此我将尽可能按照观察者的原话来呈现这些数据。

    由于把视角转化成视网膜上的大小是很重要的,反之亦然,因此在利斯汀(Listing)测量的基础上,我让主射线交叉点的距离在视网膜前面15.1774毫米=6.735巴黎行,离角膜的距离为7.4696毫米=3.315巴黎行。因此我可以用一秒的视角取代0.00007357毫米或0.00003265巴黎行。

    人们发现下面的陈述在史密斯(Smith)的光学著作中是最常用的。在这里我将从手头上的法译本中引用一段内容(T.Ⅰ,p.40):

    霍克博士(Hook)向我们保证,在与眼睛的对角小于半分时(参见他本人对爱尔维修关于天体机制研究的评论,p.8),视力再好也无法很好地分辨天空中的一段距离,例如月亮表面的一个点、两颗星的距离。如果视角没有更大的话,这些星在裸眼看起来就是一颗星。曾经有个实验我也在场,实验是由一个同伴里视力最好的来完成的,当眼睛的对角小于2/3分时,他也无法区分黑色背景上的一个白圈,也无法分辨白色或天空背景下的黑圈;或者观察对象与眼睛的距离超过了它自身直径的5156倍,他也无法分辨出来。这与霍克博士的观察结果是一致的。<... -->>
本章未完,点击下一页继续阅读
上一章目录下一页

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”