关灯
护眼
字体:

第十章 充足供氧的维持

首页书架加入书签返回目录

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

必须把氧供给增加到10倍以上这种状态的要求。心脏容量增加所受到的限制是通过加快红细胞的利用速度而得到代偿的。在安静时,我们的心率为每分钟70次左右,而在激烈运动时,可以升高至140次以上。再加上心搏出量加倍,就大大提高了满足肌肉工作中氧额外需要的能力。

    有各种不同的动因引起并保持心脏更快的收缩。实际上在工作量达到高潮之前,心率就可以开始加快。在呼吸调节作用中,我们已经注意到,只要有行动的开始动作,就能引起呼吸的加快,因为伴随此动作的神经冲动使脑部呼吸中枢兴奋起来。与此相似,在我们开始行动时,就由于一直对心脏保持阻遏作用的迷走神经受到不同程度的抑制而使脉搏加快。这些作用都是机体面对需要时作出迅速反应的一组机制,这些机制在器官上表现为两种不同的系统,但无需说明,这两个系统在彼此的协同作用中是互相密切关联的。

    四肢肌肉和横膈推动静脉血进入右心房、心室的泵式动作,引起静脉内压力增高,这一点可在用力时紧贴皮肤下面的静脉怒张得到证明。这种压力的增高使刚才提到的神经效应得以继续并加强,因为这种压力施加于心腔内时能引起右心房与大静脉连接末端部分的扩张,从而产生一个反射,即所谓“班布利奇反射”(Bainbridge reflex),它进一步抑制迷走神经对心率的阻遏作用,因而使心搏变得更快并一直保持下去。

    人们已经知道,支配心脏的交感神经同样能被右心房静脉压的增高所兴奋。此外,在肌肉高度用力时,该神经也转入兴奋,特别是像在竞赛中那样伴有情绪兴奋时更是如此。我们已知道这些神经的作用在于加速心搏。示意图27的心搏真实记录表明,甚至轻微活动都能唤起交感——肾上腺系统产生作用,而且活动越大,该系统参与作用越强。另外,有证据说明交感性支配的神经中枢可能受到某种程度的像呼吸中枢所受到的那种影响;作为二氧化碳过多的结果,该部位酸性可以提高,而其主要后果将是产生刺激。这种设想得到了马蒂松(Mathison)所做实验的支持,他证明,在呼吸空气中————因而也在血液中————有过多二氧化碳时能使动脉压升高。林顿(Linton)兄弟和我本人所做的一些观察同样说明肌肉活动产生的废物能使交感——肾上腺系统发生作用。我们发现,对完全断绝了与躯体其他部分神经联系的大肌肉群给以人工刺激,能引起去神经心脏速率的加快,这一点肯定了瑞典生理学家约翰松(Johansson)之说。这只能是由于肌肉向循环血液放出化学物质所引起,因为此时活动肌肉与躯体其他部分唯一的联系就是通过血流。但是,如事先使肾上腺失去作用,则在此实验中重复同样刺激并不产生效应,或反使心率多少有些减慢。显而易见,心率的加速并非血中变化的直接效果,而是通过交感——肾上腺装置的途径所产生的效应。

    所以,在剧烈的肌肉活动中,为了机体的需要,呼吸系统和循环系统之间的调节明显地存在着密切的关联就可得到解释了;虽然这两个系统都通过随意运动所引起的神经冲动而开始产生心率和呼吸的加速,但它们在执行其额外任务时,则是通过动脉血中二氧化碳浓度的增高而继续保持其活动的。随后,由于它们额外的活动使二氧化碳又减少到休息状态的水平,这两个系统又渐渐地回到自己安静时的日常机能状态。

    所有这些协调进行的作用提供了如下的条件,首先,使心脏对静脉流回的大量血液具备充分的接受能力;其次,在肺进行深呼吸以利于呼吸气体(氧和二氧化碳)的更大量交换时保证其有效的血液供应;最后,将带氧血液有力地输出到大面积的“动脉网”中去。

    VI

    体力运动伴有动脉血压的升高。我们业已知道,动脉内压力是向内流入的推力与向外流出的阻力二者之间相互作用的结果。在其他条件相同时,从心脏的输出量的大量增加本身就能使血压升高。但有证据说明,特别是腹部器官的大面积血管在交感系统血管舒缩神经作用下所发生的收缩,也引起外周阻力的增高。心脏和血管这两个因素的共同作用,把推动血流穿行毛细血管的压力提到相当的高度。让一个人骑在固定脚踏车上进行的试验中,动脉血压从开始时130毫米汞柱升高到180,并且在继续运动过程中此高度保持在165——170毫米之间,这个高度相当于一个大约8英尺的血柱高度,而在休息时其压力只相当于 英尺。

    值得注意的是,动脉中血压在运动实际进行之前就已升高,恰如呼吸和心率在活动开始时的增加是由于引起该活动的神经冲动所伴随的一种间接效应一样,血压在开始活动时迅速而突然的升高可能也是相同原因所造成。的确,根据威伯(Weber)的说法,仅仅从事运动的念头就能引起腹部内脏的缩小和四肢的胀大。

    关于血压升高所具有的意义,我们只要想到活动肌肉中出现小动脉和毛细血管扩张这一点就能最恰当地作出评价。如果动脉压仅仅足以使血循环速度保持在适应躯体静止状态的水平,比如刚超过临界水平,那么任何特殊部分的血管扩张都将为血液流入静脉提供一个方便途径,以致血液转而流向这条较宽的通路,而离开了没有得到充分供血的其他部位。在剧烈活动中升高的动脉压,不仅能防止不活动部分任何这样的供血不足,而且还保证大量血液能快速流过那些最需要带氧血液的活动部分中扩张的血管。

    活动肌肉中小动脉和毛细血管的扩张,是为供养细胞并运走废物的最显著的应急措施之一。周密的研究证明,在肌肉休息时,其中许多毛细血管并未被使用,也就是说它们是交替地让血液通过的;某些血管开放一段时间,然后关闭,不让血液流过,同时其他附近的毛细血管开放,以代替相邻部分的工作。在显微镜下只能看到含有血液的毛细血管。丹麦生理学家克罗格(Krogh)对躯体一侧活动肌肉与对侧不活动肌肉作了比较后发现了一个惊人的事实:在活动肌肉中开放的毛细血管数目为静止肌肉中的40倍到100倍。还不了解是什么因素引起毛细血管扩张。人们作过推测:局部缺氧或二氧化碳增加是引起血管开放的原因,即利用这种办法来摆脱自己的不利状态。也可能这种扩张是由于肌肉受牵拉时的磨损和撕裂所产生一种微妙的物质作用所引起的。

    无论毛细血管是怎样得到开放的,都不能忽视这种开放的高度重要性。我在前面强调过这一点,即血液和固定细胞间的物质交换是在毛细血管部分发生的。循环系统对体力工作的所有适应作用在此都有自己的意义。血液运给工作中的肌肉所需要的糖和氧,并能把收缩过程中氧化所生成的二氧化碳和水带走。流动血液越是能靠近具有这两种需要的肌细胞,肌肉工作就越能有效地进行。在肌肉开始行动时,肌肉中那些未使用的毛细血管明显的开放,保证了细胞与血流间紧密的联系。

    我们现在可以对循环系统中的适应性变化的过程作个结束了。显然,当肌肉有节律地收缩并压迫肌内和肌间的血管时,它所推动的血液量要比在它静止状态下的为多。总之,工作中肌肉所起的作用宛如设置在另外部位的心脏,在工作时接受较多的血液,而又把这些血液送回中心部位的心脏以及肺内,使血液更新以便完成新的任务。

    VII

    我们现在已注意到,为满足对氧的额外需求,肺每分钟换气量可能增加6倍,心脏搏出量约增加1倍,心率增加1倍,并增加动脉压,使得每分钟内有更大量的血液通过增加了需氧量的活动器官中的已扩张的毛细血管。另外还有两个相当值得注意的机制有待提及。第一个是,旨在保持稳态而运用加速作用过程的另一例证。它从肺和收缩肌肉中毛细血管内气体的便利交换可以看出。

    上面概要谈到的循环调节,其作用在于增加红细胞在肺与肌肉间在给定时间内的循环次数。虽然血流通过毛细血管时比通过循环中任何其他部分要慢得多————这是为了保证血液与组织间进行交换所需要的时间,但在循环速度加快时,毛细血管内的速度也能和别处一样得到加快。这意味着载体在肺部释放二氧化碳和装载氧以及在肌肉做工部分进行相反作用所能得到的时间都将减少。小井沼(Oinuma) [2] 以出色的观察所获事实证明,二氧化碳的增加,还有体温的升高,都能促进氧的解离。由此可知,在肌肉反复牵引中不仅产生额外的二氧化碳,还产生额外的热量,这些新的条件促使载体更快、更完全地抛出氧。甚至在中等程度的运动中也可因CO2的作用再加上活动肌肉中温度升高的作用而使氧的释放速度加倍。同时,细胞以更快的速度利用氧气,而与其直接接触的淋巴液中的氧量则减少。这造成了从血液向淋巴扩散倾向的增加,其结果是发生了更快的扩散。值得注意的是,这些作用间存在着共同变化的关系,即肌肉工作强度越大,则对氧从血细胞解离并进入细胞速度所产生的效应也越大。因此血流通过肌肉毛细血管速度的加快和流量的加大,给机体的适应带来了益处。

    氧的解离速度越快,它在血浆中的扩散压将越高,因此按照顺序,它将更快地进入淋巴,因而也更快地进入活动细胞。作为这些作用的连锁反应的结果,细胞按照其不断变化着的需要来接受氧气。

    在肺的毛细血管中,血液处在氧的相对高的扩散压和二氧化碳的相对低的扩散压之下,因为这两种气体都和肺泡有关联。其结果是,二氧化碳穿过组成毛细血管壁和肺泡壁的极薄的膜进入肺泡腔。但二氧化碳不受帮助就不能自行离去。从肺泡进入红细胞的氧能比其他方式更快地帮助驱出二氧化碳。因此在循环途中的每一个转换站,一种气体赶出其他气体后就为自己占有了后者在载体中的空位,直到下一个交替中自己又被照样赶出。在机体中任何部分都找不到比这种过程更为生动的相互作用了。

    血液在离开肺时,甚至在剧烈体力活动下的快速流动中也能带走占其全部载氧量95%的氧,也就是大约每百立方厘米血液中18立方厘米的氧。在安静的休息状态下,每100cc静脉血在返回心脏时可带回14或15cc的氧。在外周毛细血管中只放出了3或4cc。由于我们刚才讨论过的那些因素作用的效果,在活动部位中血液氧容量的下降大大增加,因而即使是混合的静脉血 [3] ,在其返回时,氧含量不到5cc%。因此血细胞从肺到需氧组织间循环次数的增加是必须依靠携带它的氧气在利用率上的进一步提高来扩大效果。

    VIII

    在遇到需要时保证充足供氧的一个更明显的措施见于肌肉运动期间红细胞数量的骤然增加。这种主要由巴克洛夫特所阐明的现象,在低等动物中比在人类更为突出。马在5分钟重度活动后每立方毫米红细胞数量可增加20%或更多一些。这种显著变化是机体对氧的需要所产生的唯一类似储存方式的适应作用,关于这种储存方式我已在氧以外其他物质的稳态中叙述过了。在繁重和长时间的肌肉劳动中,如我们所知,葡萄糖从肝储备中被动员出来并通过血液输送到任何需要的部位以供利用。从机体对失血的反应这个角度来看,脾被认为是浓缩集存红细胞的一个贮藏所。如遇到引起交感——肾上腺系统产生作用的处境,例如一旦发生缺氧,而使脾肌肉产生收缩,则其中内容物就被挤出。在猫身上,运动可使脾在一次释放后其重量从26克减至13克,可知有13克是特别富含红细胞的体液。自然,这些血细胞在面临要求发挥作用的时刻立即就变成了氧和二氧化碳的载体。

    为保持对机体中固定细胞和远处细胞的氧的输送的稳态,存在着上述这些多种多样的精密安排的机制,这一点反映了保持一个不断适应需求的输送作用的重要性。在所有中度和长时间的劳动中,在参与这种所必需的职能的多数因子的密切合作下,才有效地维持了充足供氧。但在剧烈和极重的劳动中,这种供给可能尚不足以满足其要求。这时非挥发性乳酸开始在细胞内蓄积并向外扩散入淋巴和血液。但血液的酸碱度应处于酸性和碱性反应之问并接近中性的状态,这一点是不允许改变的。关于保护机体免于遭到这种危险的一些防备措施,我们将在下面加以考察。

    参考文献

    Bainbridge. Journ. Physiol., 1914, xlviii, 332.

    Barcroft. Ergebn. d. Physiol., 1926, xxv, 818.

    Cannon and Britton, Am. Journ. Physiol., 1927, lxxix, 433.

    Cannon, Linton and Linton. Ibid., 1924, lxxi, 153.

    Henderson. Physiol. Rev., 1923, iii, 165.

    Hill, Long and Lupton. Proc. Roy. Soc., London, 1924, xcvi, 442.

    Johanson. Skand. Arch. f. Physiol., 1895, v, 59.

    Krogh. The Anatomy and Physiology of the Capillaries. New Haven,1929, 64.

    Mathison. Journ. Physiol., 1911, xlii, 283.

    Oinuma. Ibid., 1911, xliii, 364.

    Starling. The Law of the Heart. London, 1918.

    Weber. Arch. f. Physiol., 1907, 300.

    * * *

    [1] 1夸脱(quart)约等于1.14公升。————译者

    [2] 小井沼为原书上Oinuma的日语音译。————译者

    [3] 指来自活动部位与非活动部位混合的静脉血。————译者
上一页目录下一章

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”